ユーフォルビア・オベサ・ドットコム

カテゴリ: 多肉植物の論文

一般に砂漠や湿地、高山などの特殊な環境に生える植物は環境の変動に脆弱です。当然ながら、乾燥地に生えるサボテンも強い影響を受ける可能性があります。世界規模で地球環境が変動する可能性が指摘されていますが、実際にはどうなのでしょうか? 気候変動がサボテンに与える影響をシミュレーションしたMichiel Pilletらの2022年の論文、『Elevated extinction risk of cacti under climate change』を見てみましょう。

サボテンは南北アメリカ大陸に分布しますが、環境により常に他の植物より優占している訳ではありません。サボテンは乾燥に適応したものが多いのですが、より湿った環境では、乾燥にそれほど強くない植物には勝てません。
しかし、今後アメリカ大陸は乾燥化がより進むと予想されるため、より乾燥に強いサボテンがむしろ増えるのではないかという意見もあります。たしかに、乾燥に強くないの植物は乾燥化に耐えられないでしょう。サボテンはCAM植物(※1)であり、乾燥化に対してはより有利だとされます。
しかし、乾燥化だけではなく、より高温となることも予測されており、多くのサボテンにとって好ましい状況とは言えないかも知れません。最近の研究では、わずか+2℃の高温によりサボテンに光合成障害が起きることや、高温によるサボテンの種子の発芽率の低下が報告されています。

(※1) CAM植物は、暑い日中は気孔を閉じて水分の放出を最低限とし、涼しい夜間に気孔を開いて二酸化炭素を吸収します。さらに、取り込んだ二酸化炭素をリンゴ酸として水に溶かした状態で貯蔵することが出来ます。ただし、その分だけコストがかかりますから、通常の植物(C3植物)より生長は緩やかとなります。

論文では、408種類のサボテンを評価しています。シミュレーションは、2050年と2070年の予測下の気候変動に対して、サボテンがどのように分布を拡大・縮小するかを見ています。
結果としてはSCA(※2)の変動が起きました。サボテンの大部分は好ましい気候の減少を経験する可能性があります。平均SCAは6%の減少に過ぎないため、比較的軽微に見えますが、これは一部の種類の大幅な増加により、減少が隠されてしまっているからです。分析すると、SCAの中央値付近では23%がSCAの1/4以上を失い、わずか2%がSCAの1/4以上を獲得すると予測されます。全体としては、種の60%がSCAの減少を経験します。

(※2) 適切な気候地域。(suitable climate area)

サボテンには種の多様性が高いホットスポットが存在し、メキシコ中央部、ブラジルの大西洋岸、
ブラジルのCaatingaなどが知られていますが、将来的にこれらの地域では絶滅危惧種の急激な増加が予測されます。フロリダ州と南アメリカ中央部の広い範囲で、サボテンの50%以上の種類が失われ、カリブ海地域や中南米のほとんどで絶滅危惧種が増加する可能性があります。

以上が論文の簡単な要約となります。
シミュレーションや解析のアルゴリズムは、残念ながら私には理解出来ませんから、その妥当性についての判断は出来ませんでした。しかし、過去の知見からすると、将来訪れるであろう高温に対し、サボテンがどこまで耐えることが出来るのかは悲観的にも感じます。また、乾燥に対しても論文ではサボテンに有利としていますが、それは他の植物との競争に対しての話でしかありません。他植物より相対的に乾燥に強いというだけで、極度の乾燥に強いという訳ではないはずです。以前、マダガスカルのユーフォルビアは、幹を太らせるサボテンタイプより、乾季に葉を落として休眠する塊根タイプの方が、乾燥に強いという論文をご紹介しました。果たして、サボテンは極度の乾燥に耐えられるのでしょうか?  ユーフォルビアとサボテンは異なりますから、イコールではないかも知れませんが、あまり甘い見立てで安心すべきではないと思います。何れにせよ、論文を読んでいて気候変動が多肉植物に対してポジティブに働くケースを私は知りません。まったくの一般人である私には、美しい野生の多肉植物がこの世界から失われないことをただ祈るだけです。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。

にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

トウダイグサ属(Euphorbia)は、最も種数が多い属の1つとされ、基本的に毒性のある乳液があります。種類によっては、皮膚に乳液がつくと激しい炎症を引き起こしたり、目に入ると失明する可能性があると言われています。一般的に植物の毒は草食動物に対する防御策であることが知られていますが、ユーフォルビアはどうでしょうか? 植物が毒を持つと、動物も毒に耐性を持ったものが現れ、さらに異なる毒を植物が産生するようなりに、その毒に対して動物が…、という風に植物と動物で終わりのない軍拡競争が行われます。では、ユーフォルビアの毒性はそのような軍拡競争の末の産物なのでしょうか?

調べてみたところ、M. Ernstらの2018年の論文、『Did a plant-herbivore arms race drive chemical diversity in Euphorbia?』を見つけました。タイトルはズバリ、「植物と草食動物の軍拡競争はユーフォルビアの化学的多様性を促進しましたか?」です。植物と草食動物の軍拡競争により、ユーフォルビアの毒の種類が多様になったのかを検証しています。
ユーフォルビアは約2000種あり、約4800万年前にアフリカで発生したと考えられています。3000万年前と2500万年前の2回に渡り、世界中に分散しアメリカ大陸まで分散が拡大しました。ユーフォルビアの毒は多環ジテルペノイド類によります。論文では43種類のユーフォルビアの遺伝的多様性、分布、毒の成分を調査しています。

ユーフォルビアは、旧世界のユーフォルビア亜属(subgenus Euphorbia)、アティマルス亜属(subgenus Athymalus)、エスラ亜属(subgenus Esula)と、主に新世界のカマエシケ亜属(subgenus Chamaesyce)からなります。
ユーフォルビア亜属は、南アフリカやマダガスカルに分布し、柱サボテン状になるE. cooperiやE. grandicornisのように巨大に育つもの、マダガスカルの花キリン類、飛竜などの塊根性のもの、旧・モナデニウムなどがあります。また、一部は南米原産のものもあります。
アティマルス亜属は南アフリカや西アフリカ、アラビア半島の一部に分布し、E. obesaやE. polygona var. horrida、鉄甲丸(E. bupleurifolia)、群生する笹蟹丸(E. pulvinata)、E. gorgonisなどのタコものなど、よく園芸店で見かけるユーフォルビアが沢山含まれます。
エスラ亜属はヨーロッパ原産のカラフルなカラーリーフとして最近良く目にしますが、アジアにも広く分布します。
カマエシケ亜属は主に南北アメリカの原産です。


さて、当然ながら旧世界から新世界へユーフォルビアは分布を拡大したと考えられますが、4亜属をそれぞれ10種類前後を調べたところ、新世界に分布するカマエシケ亜属のユーフォルビアは含まれる毒性成分が少なく種類も貧弱でした。これは、旧世界にはユーフォルビアを食害する蛾がいますが、新世界にはいないからかも知れません。このHyles属の蛾の幼虫は、ユーフォルビアに特化しています。しかし、南アフリカとマダガスカルでは、Hyles属の蛾がいない地域でも、ユーフォルビア亜属やアティマルス亜属の植物は毒性が高いことが明らかになっています。これは、過去に存在した外敵に対するものだったのかも知れません。例えば、クロサイはユーフォルビア亜属のユーフォルビアを広く食べることが知られています。

以上が論文の簡単な要約となります。
おそらくは、現在のユーフォルビアの毒性は、食害する外敵との軍拡競争の結果としてもたらされた産物なのでしょう。しかし、新世界に渡ったユーフォルビアには、もはや軍拡競争の相手がいないため、毒性がマイルドになっていったのでしょう。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。

にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

5月に神代植物公園のバラフェスタに行ってきました。バラも大変素晴らしかったのですが、大温室では様々な熱帯植物を見ることが出来ました。その中でもTacca chantrieriの花を見ることが出来て感激しました。実は去年も大温室に行きましたが、その時は残念ながら花を見ることが出来なかったのです。ですから、余計に嬉しかった訳です。
DSC_0521
Tacca chantrieri
見てお分かりのように、非常に不思議な形の花です。ぶら下がっている丸いものが花で、後ろの花ビラのようなものは苞でしょうか? しかし、垂れ下がる長いヒゲのようなものはいったい何でしょうか? 何より不思議なのは、なぜこのような形状をとったのかということです。花の形や色は意味があり、大抵は花粉媒介者に対するアピールです。このような地味な色合いの花には蝿が来たりしますが、その場合は腐敗臭やキノコ臭で蝿を呼ぶものが多いような気がします。では、この不思議な花を咲かせるT. chantrieriの受粉はどのように行われるのでしょうか。調べてみたところ、T. chantrieriの受粉に関してのLing Zhangらの2011年の論文、『PREDICTING MATING PATTERNS FROM POLLINATION SYNDROMES: THE CASE OF "SAPROMYIOPHILY" IN TACCA CHANTRIERI (TACCACEAE)』を見つけました。簡単に見ていきましょう。

Tacca chantrieriは中国南部や東南アジアに分布します。奇妙な花のために園芸で利用されます。しかし、奇妙な花を持つにも関わらず、Tacca属の受粉に関する調査はなされてきませんでした。1972年のDrenthや1993年のSawは、花の色と臭いが腐った有機物を模しており、訪れる蝿により受粉することを想定しました。暗い花色、長い糸状の付属物と苞、花のトラップ、蜜の欠如、腐敗臭は、蝿を利用するサトイモ科、ラン科、ウマノスズクサ科などの花の特徴です。しかし、T. chantrieriからは腐敗臭を感じません。著書らは人間には感知出来ない種類の臭気を発している可能性はあるとしています。

DSC_0508
Aristrochia salvadorensis
ウマノスズクサ科の花。

さて、実際の自生地における観察では、ほとんど昆虫は訪れませんでした。アリやコオロギが来ることがありましたが、雌しべや雄しべに触れることはありませんでした。まれに蜂が訪れて花粉を収集し受粉に寄与していましたが、頻度は低くメインの受粉媒介者ではなさそうです。不思議なことに、当初考えていた蝿は訪れませんでした。T. chantrieriは暗く湿った林床に生えますから、環境中に蝿は非常に豊富にも関わらずです。分かったことは、花に袋を被せて花粉媒介者を除外しても、受粉の効率に差はありませんでした。そこで、遺伝的を調べたところ、ほとんどの種子が自家受粉によるものでした。

私はこの結果を受けて、すぐに共進化による特殊化を思い浮かべました。植物が特定の昆虫と一対一の関係を結んでいた場合、花は特殊化し昆虫も適した形状に特殊化します。つまり、T. chantrieriはある昆虫に適した形状に進化しており、対応する昆虫はすでに絶滅している可能性です。もちろん、その昆虫が絶滅したのは今回の調査地である中国南部だけのことで、東南アジアの他のT. chantrieriは本来の受粉関係を結んでいる可能性もあるわけです。しかし、著者らは、対応する昆虫以外の昆虫が花に来れないような仕組みがT. chantrieriにはないため、その可能性は疑わしいとしています。著者らは訪れる昆虫の発生の増減が関係している可能性を指摘します。つまりは、訪れる昆虫が大量に発生した場合のみ、有効な他家受粉が起きるのです。また、中国南部が有効な花粉媒介者に適さない環境になったため、一見して受粉者がいないように見えるだけかもしれないとも言います。

DSC_0541
Anguraecum florulenthum
長い距がありますが、その先端に蜜が溜まっています。この蜜を吸えるのは、口器が特殊化した蛾のみです。蛾はこのランの蜜を吸うために特殊化し、ランと蛾は一対一の関係を結んでいます。しかし、もしその蛾が絶滅した場合、このランは受粉出来ず、いずれ絶滅してしまいます。

では、T. chantrieriは自家受粉に適応しているかというと、それも疑わしいとしています。何故なら、自家受粉に適応した植物は花が咲けばほぼ確実に結実しますが、T. chantrieriはそうではありませんでした。

さて、花の構造も受粉媒介者に影響する可能性があります。私はBulbophyllumというランを育てていますが、風で動く部分があります。花は大変な悪臭を放ちますから、蝿を呼んでいるのでしょう。すると、風で動く部分は蝿にアピールする効果があるのかも知れません。T. chantrieriも糸状の構造が沢山ありますから、受粉に関係していそうです。そこで、大きな苞葉や糸状の構造を除去する実験も行なわれました。しかし、そもそも除去していない植物にも昆虫がほとんどこないこともあり、除去しても差はありませんでした。
また、大きな苞葉は、日光を浴びて果実の発育のために光合成をしているとかも知れません。しかし、生える環境が暗い森の中であり、花茎が垂直に伸びるT. chantrieriは最適とは言えないため、説明としては疑問です。そのため、T. chantrieriの構造がどのような意味を持つのかは分かりません。

120526_154137
Bulbophyllum wendlandianum
花の根本に毛があり風になびきます。さらに、中心部分がピコピコ動きます。大変な悪臭を放ちます。


以上が論文の簡単な要約です。
割と詳しく調査されたにも関わらず、結局は何も分からない実にスッキリしない結果でした。著者らの考察もいまいち説得力がありません。しかし、明らか進展はありました。以前は確証もなく、蝿が来るだろうと思われていましたが、最低限この研究における観察中は蝿は訪れませんでした。もちろん、蝿の種類や、他の地域に生えるT. chantrieriは異なるのかも知れません。今回、判明したことを基礎に置いて、後続の研究が行われることを期待します。あるいは、他の種類のTaccaではどうなのでしょうか? もし、他種では普通に蝿が来ていたりした場合、合わせて系統関係を調べたら、花の謎は一気に解けるかも知れません。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

既知の生物にはすべて学名が付けられています。しかし、この学名の特に種小名は一見して由来が分からないものも沢山あります。学名の基本は属名+種小名です。ヒトの学名はHome sapiens、つまりHomo=ヒト属+sapiens=賢い、となります。植物の種小名を見ていると、①特徴を表したもの、②採取された地名に因むもの、③献名、という3パターンがあります。

①特徴を表したものは、「albiflora=白い花」のように見たままの特徴から来ていたり、「mirabilis=素晴らしい」のように抽象的なものもあります。

②採取された地名に因むものは、「japonica=日本の」、「chinensis=中国の」などは我々の身近な植物にはよくあります。しかし、あくまで採取地点ですから、最も個体数が豊富な分布の中心ではなく、飛び地のように僅かに生える場所に因んでいることも珍しくありません。また、日本には大陸から園芸用に様々な木々が持ち込まれましたが、江戸時代に日本を訪れたヨーロッパ人たちはそれらが日本で採取されたため、本来は分布しないのに日本の地名に因んだ名前を付けたりしました。しかし、実際には種小名はあくまで命名のための記号に過ぎないので、意味を問う必要性は皆無でしょうし、それらが訂正されることはありません。
この問題は①の特徴を表したものにも関係します。例えば、赤系統の花を咲かせる植物に、少しクリーム色の新種が発見された場合、「albiflora」と命名されたとしましょう。しかし、その後により白い花の新種が見つかった時、実態に合わせて種小名を変更したらどうなるでしょうか? おそらくは混乱します。2つの植物が同じ名前で呼ばれていたという事実は、禍根を残します。さらに、最も適した特徴の新種が見つかった場合、その都度学名を変更しなければなりません。これでは学名は不安定すぎて、同じ名前の植物について書かれていても、時代や人により異なる植物を示しているなんてことになりかねません。学名について書かれた論文を読んでいるとよく目にする「学名の安定のため」という文言は思った以上に重大なものなのかも知れません。

③の献名については、実はよく分かりません。論文を読んでいると、発見者や採取者、その分野の著名な研究者から来ていたりしますが、必ずしもそうではないような気がします。

前置きが長くなりましたが、今日の本題はこの献名についてです。献名のルールのようなものがあるのかよく分かりませんが、私は全く知らなかったため、何か参考になる論文はないかと少し調べて見ました。見つけたのが、Estrela Figueiredo & Gideon F. Smithの2011年の論文、『Who's in a name: eponymy of the name Aloe thompsoniae Groenew., with notes on naming species after people』です。論文の趣旨は簡単で、Aloe thompsoniaeというアロエは誰に対する献名なのかという話です。

230521165020125
Aloe thompsoniae

Aloe thompsoniaeはアフリカ南部の中では最も小さいアロエの1つです。Section Graminaloe Reynoldsに属するグラスアロエです。A. thompsoniae は南アフリカのリンポポ州の標高1500mを超える雲霧帯に分布します。
さて、1936年にGroenewaldがAloe thompsoniae Groenewという学名を発表しました。しかし、この「thompsoniae」が誰に対する献名であるかは混乱しており、Groenewaldも誰に対するものか記していません。しかし、1941年に出版されたGroenewaldのアロエに関する本では、「Mev. Dr. Thompson」、つまりはMrs. Dr. Thompsonという名前を繰り返し使用しています。どうやら、Thompson夫人が様々なアロエを採取したようです。しかし、いつしか「Mev.(=Mrs.)」が忘れ去られて、「Dr. Thompson」だけが独り歩きしたようです。
Reynoldsは献名を誤解した最初の著者で、1946年の著書ではThompson夫人をThompson博士と呼び、「Thompson博士が最初に植物を採取し始めたのは1924年頃」と述べています。しかし、それは実際には「Mev. Dr. Thompson」、つまり医師であったThompson博士の妻であるThompson夫人のことでした。ちなみに、Thompson夫人は博士号は持っていません。

GroenewaldはA. thompsoniaeのタイプ標本を指定しませんでした。後の1995年に、Glen & Smithによりレクトタイプ化されました。選ばれた標本はReynoldsにより示唆された1924年のものではなく、1930年にThompson夫人により収集されたとあります。Glen & SmithはThompsonという姓を「Sheila Clifford Thompson」という名前に関連付けました。これは、Gunn & Coddの1981年の植物収集家のリストにThompson夫人の記載がなかったせいかも知れません。その後、Sheila Clifford ThompsonはLouis Clifford Thompsonの母親であることが分かりました。また、Sheila Clifford Thompsonの娘であるAudrey Thompsonとする場合もありました。

この誤りは文献やインターネットで流布しています。Aloe thompsoniaeに献名されているのは、正しくはEdith Awdry Thompson(旧姓Eastwood)を示しており、Dr. Louis Clifford Thompsonと結婚しています。Sheila Clifford ThompsonはThompson夫人の娘です。

1903年、Awdry Thompsonは子供の頃、南アフリカのリンポポ州にあるHaenertsburg近くにあるWoodbushに到着しました。彼女は植物収集経験がある両親であるArthur Keble EastwoodとJane Mary Emma Eastwoodの影響により植物収集を開始しました。1910年にPaul Ayshford Methuenが訪れ、動植物の収集旅行をしたことにより、より関心が高まりました。彼女の標本から命名されたいくつかの動物には「eastwoodae」と献名されています。彼女の回想において、「私が夫とLowveldの農民であるHarry Whippと共に馬に乗り、放牧されていたHarryの牛を調べていた時、Wolkbergの山頂の平坦な場所でいくつかの岩の間で育っていました。」と、A. thompsoniaeの発見を記しています。

アロエに献名された女性は僅か19人しかいませんが、Awdry Thompsonはその1人です。Carl von Linneの時代から、植物学での業績や新種の発見者を称えるため、献名が行われてきました。例えば、2009年から2011年にかけて12種類のアロエに対し献名がなされましたが、そのすべてが植物学者やアマチュア研究者、採取者に対するものでした。しかし、アロエ以外の植物ではここ数年間で富裕者が献名の権利を購入するという新しい慣行が出現しました。金品と引き換えに名誉を得ようというこの慣行に対し、多くの植物学者は嘆かわしいことであると感じています。

献名は命名に際して一般的ですが、それが誰に対する献名か記載がない場合があります。しかし、それでは献名の持つ、特定の人物を記念するという目的に反します。場合によっては命名者しか知らない無名の人物に対する献名すら存在します。しかし、それらを禁ずる規則はありませんが、誤った人物と関連付けられる可能性に留意が必要です。よって、献名すらならば、献名する人物に対する情報を添付することをお勧めします。また、ラテン語は性別により語尾が変化しますから、性別についても述べる必要があります。A. thompsoniaeも男性にちなんで命名されたと勘違いされ、Aloe thompsoniとされたこともあります。

以上が論文の要約になります。
学名の由来についても記載がある図鑑を読んでいると、由来がはっきりしなかったり、複数の人物のいずれかの可能性があるなど、大変歯切れが悪いものが多くあります。命名は生物を分類することを目的としていますから、本質的には由来は重要ではありません。しかし、1753年以来、数多くの学者が活躍し数えきれないくらいの生物が命名されて来ました。最早、生物の発見や研究、命名ですら歴史となっています。過去の命名や発見に関する論文も、まだ数は少ないものの出て来ています。しかし、このような調査は古い資料の渉猟など、とにかく手間がかかりますから、やはり著書らが主張するように誰に対する献名が明記していただくのが最善なのでしょう。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

南アフリカは多肉植物の宝庫ですが、アフリカ東岸やマダガスカルもユーフォルビアの宝庫です。しかし、アフリカ内陸部についてはあまり話題に登らないことが多いように思われます。本日はそんなアフリカ大陸の内陸部にあるジンバブエのユーフォルビアのお話です。

本日ご紹介するのは、『Euphorbia of Matabeleland, Zimbabwe』です。ジンバブエは南アフリカの北部に一部を接する内陸国で、アフリカ大陸南部の東岸にあるモザンビーク、その左隣のジンバブ、その左隣のエボツワナ、西岸のナミビアという並びです。ちょうど、南アフリカの北を4カ国が蓋をしているような形になっています。ジンバブエのMatabeleland州は南アフリカとの国境の一部である南のリンポポ川からボツワナまで、国の西側に沿うようにあります。北部はザンベジ川からザンビアとの国境を形成します。標高は最南端の約400mから北のチザリア高原の1400mまでです。このような多様な環境に自生する、ジンバブエはMatabelelandのユーフォルビアを見ていきましょう。

①Large Tree 
◎Euphorbia ingens E.Meyer ex P.E.Boisser
E. ingensは「巨大」を意味し、高さ10mに達し、Matabelelandで最大クラスのユーフォルビアです。幹は木質化し基部から2〜4mで分岐します。枝は通常4つの稜を持ち、主幹は4〜6の稜を持ちます。柱サボテン状のユーフォルビアは、稜の角が角質化してトゲが繋がっていることがありますが、E. ingensは連続しません。茎は緑色で若い時は斑が入ることがあります。葉は若い時はありますが、基本的に残りません。花は通常黄色で、果実は暗赤色に熟してしばしば鳥に食べられます。E. ingensの乳液は魚毒あるいはトリモチの材料とされます。MatabelelandではE. ingensは岩が多い場所を始め様々な環境で育ちますが、霜が降りない地域に生えます。州全体で見られますが、Bulawayo周辺とBulawayoの南部のMatobo丘陵に集中します。

◎Euphorbia cooperi
      N.E.Brown ex A.Berger var. cooperi

E. cooperiは、N.E.Brownの義父であるThomas Cooperiにちなんで命名されました。高さ約7〜10mになります。枝は基部で肥大し膨らみます。枝は通常4〜6稜で、主幹は5〜8稜です。トゲは連続し、対になった大きいトゲと、ない場合もある小さなトゲが交互にあらわれます。花は黄色で、果実は熟すと赤色になります。E. cooperi var. cooperiの乳液は非常に毒性が高く、皮膚についたり目に入ると危険です。乳液は魚毒あるいはトリモチとして利用されます。E. cooperi var. cooperiは州の中央から南部にかけて分布します。
230528143931738
Euphorbia cooperi var. cooperi
対になった強いトゲの間に弱いトゲがあります。

◎Euphorbia cooperi N.E.Brown ex A.Berger
     var. calidicola L.C.Leach
「calidicola」は暑く乾燥した場所に生えることを意味します(※)。高さ10mに達し、主幹は3〜4(5)稜、枝は2〜3稜です。非常に多様なくびれがあり、var. cooperiと区別出来ます。花序もvar. cooperiよりわずかに長いようです。花は黄色で大きく、著者の観察では蜂、蝿、蛾、甲虫、蝶、亀虫、蟻など、沢山の昆虫を引き付けるそうです。果実は熟すと赤色になります。乳液は刺激が強く、トリモチとして利用されます。
E. cooperi var. calidicolaはMatabelelandの北西部、北部、北東部の高温になる乾燥地に生え、川沿いでよく見かけますが、それ以外の場所でも自生します。

(※1) ラテン語で「calidus」は熱いという意味です。

◎Euphorbia fortissima L.C.Leach
「fortissima」は非常に角質化した稜が強いことに由来します。高さ7mに達し、大きなトゲがあります。主幹は5〜6稜で枝は最大5mで、時折再分岐し3〜5稜です。狭い楕円形から卵形にくびれます。果実は緑色で熟すと淡い赤色に変わります。
E. fortissimaはMatabeleland北部でのみ見られ、主に非常に暑く乾燥した場所で、時には急斜面に生えます。降水量は不安定で、年間100〜1000mmの範囲で変化します。茎のくびれは1年に1つできますが、降水量の多寡によりサイズが変わります。著者の観察では毛虫が沢山つき、雑菌の二次感染により多くのE. fortissimaが枯死しました。

◎Euphorbia confinalis
     R.A.Dyer subsp. rhodesiaca L.C.Leach

「rhodesiaca」はジンバブエの旧名であるローデシアに因みます。ジンバブエ固有種で、若い時は美しい斑があります。高さは15m以上に達します。主幹は5〜7稜、枝は4〜6稜です。枝は長楕円形から卵形にくびれます。subsp. confinalisは高さ30cmほどで分岐を開始しますが、subsp. rhodesiacaは場合によっては高さ1m以上になってから分岐し始めます。稜の間は連続しており頑丈です。花は黄色で小型です。乳液は非常に有毒と言われています。
MatabelelandではBulawayoの南にあるMatobo丘陵から知られています。この地域では変化に富んでおり、E. cooperiに似た形態も見られます。一部の植物は乳液が透明で、これはE. cooperiとの交雑種である可能性があります。この地域では、個体数が減少しており、何らかのストレスがかかっていることが想定されます。著者の観察では、若い植物がほとんどなく、20年以上のものが大半でした。最も若い植物でも、高さ50cm未満の12年生のものでした。
230528143945495
Euphorbia confinalis subsp. rhodesiaca 

②Spiny Shrubs
◎Euphorbia persistentifolia L.C.Leach
高さ3mに達する多茎のトゲのある多肉質の低木です。幹と枝は通常4〜5稜で、稜の間は連続します。通常は目立つ対になった強いトゲと、その間の弱いトゲからなります。花は黄色です。
E. persistentifoliaはHwangeの南約150kmの州北部でのみ見られ、さらに100km北のザンベジ川とビクトリアの滝あたりに散在します。通常は浅い土壌で岩や石が多い環境です。


◎Euphorbia malevola L.C.Leach
      subsp. malevola

「malevola」は悪意を意味しますが、トゲに由来する名前です。高さ1〜2mの枝分かれしたトゲのある低木です。茎は灰緑色から青緑色、淡緑色または赤みがかった色まで様々で、直径は最大2.5cmです。枝は時にねじれたり螺旋状になり4〜5稜です。しばしば大理石様の模様があります。稜は不連続です。トゲはメインのトゲの間に弱いトゲがあります。花序と花は鈍いオレンジ色から淡い赤色、あるいは濃い赤色です。
Matabelelandでは、主に北部、北東部、北西部に見られ、Wankie周辺の砂岩と泥岩の土壌に育ちます。南部からの報告もありますが、著者は見たことはないそうです。


◎Euphorbia griseola F.Pax subsp. griseola
「griseola」は灰色がかった色を意味し、角質化した稜の色を指しています。通常は高さ1〜2mのトゲのある多肉質の低木です。基部から分岐し、枝の途中からも再分岐します。茎は4〜6稜で、緑色から黄緑色、斑が入ります。稜の間は連続あるいは準連続です。花序と花は黄色から緑がかる黄色です。
Matabelelandではブラワヨを中心に分布し、ボツワナ国境まで広がっています。Matobo丘陵には沢山のE. griseolaが見られます。

DSC_0166
Euphorbia griseola

③Small spiny shrubs
 ◎Euphorbia schinzii F.Pax
1890年代にスイスの植物学者で植物コレクターのHans Schinz博士に因みます。高さ30cmまでのコンパクトなトゲのある多肉植物です。太いを持ち、沢山の枝を出します。枝はほとんど4稜で、淡いオリーブグリーンから濃いオリーブグリーン、または灰緑色です。花は黄色です。
Matabelelandの南から北に散在します。


④Non-Spiny Shrubs or Small Trees
◎Euphorbia guerichiana Pax
高さ2mに達しますが、トゲのない木質の半多肉質の低木です。通常は多茎で、成熟した茎は黄褐色または淡褐色の樹皮に覆われます。若い茎は緑色ですが、後に灰色がかります。E. guerichianaは降雨量により薄緑色から青緑色の葉を出し、長さ約7〜35mmで短い葉柄があります。花は通常は黄色ですが、緑色や赤色にもなります。
Matabelelandの南部と南西部の、暑く乾燥した低地でのみ自生します。いくつかの点で、続く2種類に似ています。


◎Euphorbia espinosa F.Pax
「espinosa」はトゲがないことを示しています。高さ3mほどのトゲのない低木で、交互に広がる枝を持ち、幹は茶色かわかる樹皮に覆われます。地下に塊根がある半多肉植物です。葉は長さ44mmまでで、明瞭な縞模様があります。葉柄は通常赤みがあります。花は普通は黄色です。
Matabelelandの南から北に散在し、特に中南部から北部に豊富です。岩の多い場所によく見られますが、様々な土壌で生長しているようです。


◎Euphorbia matabelensis F.Pax
高さ4mまでの半多肉植物で、木質の低木です。多数のトゲのある尖った一次枝と二次枝を持ちます。葉は多肉質で線形から披針形です。花は黄色です。
Matabelelandの南から北に見られます。南部ではそれほど豊富ではありません。Bulawayo周辺に近づくにつれて、特にMatobo丘陵の花崗岩の丘の砂質土壌では一般的です。Bulawayoから北に向かうとE. matabelensisは散在し、Hwange国立公園では深いカラハリ砂漠にも落葉広葉樹の下で生長し、さらに北のザンベジ川とビクトリアの滝あたりに分布します。


⑤Small to very small non-spiny herbs
◎Euphorbia monteiri W.J.Hooker
      subsp. monteiri

多年生の多肉植物で、19世紀後半にアンゴラにおいて初めて採取したJ. monteiroに因みます。茎は高さ30cm以上、直径10cmになります。頂点から葉が沢山出ます。ジンバブエでは珍しく、これまでにボツワナ国境のMatabelelandな北西からのみ知られています。

◎Euphorbia transvaalensis R.Schlechter
初めて発見された南アフリカのTransvaalに因みます。高さ1.6mまでのトゲのない低木で、時に密に枝分かれします。しかし、ほとんどの植物は小さく高さ5〜25cmです。地下に塊根を形成します。若い時の枝は草本あるいは亜多肉植物で、やがて木質となります。古い茎は中空となり挿し木に向きません。環境が悪化すると、落葉さらには地上部はすべて枯れますが、やがて地下の塊根から新しい枝を出します。葉は3〜10.5cmで葉柄があります。花は黄色から緑がかった黄色です。Matabeleland全体に分布し、岩や砂が多いばしに散在します。時々、粘土質の土壌にも生えます。

◎Euphorbia davyi N.E.Brown
プレトリアの植物学者であるJ. Burtt  Davy博士に因みます。トゲのない多年生の矮性多肉植物です。いわゆるMedusoid(タコもの)です。Matabelelandでは一般的ではなく、南西部のいくつかの地域でのみ見られます。露出した岩の多い砂利の多い土壌に生えます。

◎Euphorbia trichadenia F.Pax
「trichadenia」とは毛深い腺という意味です。多年生の落葉する草本です。長さ10cmまでの塊根を発達させます。樹皮はコルク状です。枝は3〜10cmです。Matabelelandの最東部にのみ自生し、一般的ではありません。

◎Euphorbia platycephala F.Pax
「platycephala」は広いあるいは平らな頭という意味です。地下の塊根から茎を出す落葉植物です。1本以上の高さ7〜10cmほどの多肉質の茎があります。葉は長さ4.5〜7.5cmで、温室で栽培すると葉や茎は淡い黄緑色ですが、生息地ではより青みがかった緑色です。Matabelelandの最東部からのみ知られています。

◎Euphorbia oatesii Rolfe
1890年代にローデシアを旅したOates氏に因み、ジンバブエにタイプ標本の産地があります。落葉性の塊根のある草本です。根の樹皮は灰色です。根は直径45mm、長さは最大1mになります。枝は高さ20cm以上で一年性です。茎と枝は淡い緑色、黄緑色、黄色がかる赤色、または赤色で、白または黄色がかる毛に密に覆われます。葉は長さ5〜70mmで、線形から披針形、淡緑色から青緑色です。葉の上面には不規則な模様があります。Matabelelandでは北東端にのみ見られ、砂質土壌で育ちます。塊根の露出を嫌うようです。

以上のように、ジンバブエの18種類のユーフォルビアをご紹介しました。しかし、残念ながら私はほとんど未入手なため、写真をお示し出来ないのは非常に残念です。今後、何かしらのジンバブエ・ユーフォルビアを何かの拍子に入手出来ましたら、お示し出来ればと思っております。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。

にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

昨日はマダガスカルのユーフォルビアの形態と乾燥条件などの関係についての論文をご紹介しました。Margaret Evanceらの2014年の論文、「Insights on the Evolution of Plants Succulent from Remarkble Radiation in Madagascar (Euphorbia)」です。実はこの論文ではマダガスカルのユーフォルビアの系統関係についても調べられています。興味深い内容ですので、系統関係を見てみましょう。ちなみに、その植物が生える地域の降水量も添えました。育てる際の参考になるかも知れません。

Section Goniostema
Goniostema節は一般に花キリンと呼ばれ、花卉として様々な園芸品種が流通しています。その多くは木質化した枝から葉を出し、トゲがあるものも多く、塊根性のものもあります。論文では5つのクレードに分けており、それはlophogona clade、milii clade、primurifolia clade、boissieri clade、thuarsiana cladeです。

①lophogona clade
DSC_0102
Euphorbia moratii 降水量1320mm

DSC_2476
Euphorbia didiereoides 降水量856mm

DSC_1608
Euphorbia gottlebei 降水量674mm

DSC_0101
Euphorbia rossii 降水量717mm

DSC_1765
Euphorbia pedilanthoides 降水量1540mm

②milii clade
milii cladeは塊根性花キリンを沢山含みます。なお、E. miliiは命名の由来が不明であり、正確にはどの種類を示しているか分かっていませんでした。しかし、2022年の論文によると、葉の先端を切ったような形の花キリンがE. miliiであるとしています。今までE. miliiとされてきた、様々な色の花を咲かせ楕円形の葉を持つ、よく栽培される花キリンはE. splendensとなっています。

DSC_0113
Euphorbia tulearensis 降水量387mm

DSC_0108
Euphorbia cylindrifolia 降水量874mm

DSC_0109
Euphorbia ambovombensis 降水量559mm

DSC_0002
Euphorbia cap-saintemariensis 降水量422mm

_20230318_210719
Euphorbia decaryi 降水量730mm
※現在は、E. boiteauiとなっています。


DSC_2505
Euphorbia francoisii 降水量1607mm
※現在は、E. decaryiとなっています。

③primulifolia clade
この論文では、E. primulifoliaは産地によって、かなり遺伝的に異なることが分かりました。Horombe原産のE. primulifoliaはmilii cladeのE. waringiaeに近縁で、Isalo原産のE. primulifoliaもやはりmilii cladeでした。
E. primulifolia var. primulifoliaは降水量1376mm、Horombe原産のE. primulifoliaは降水量847mm、Isalo原産のE. primulifoliaは降水量792mmとかなりの違いがあります。


④boissieri clade
DSC_0116
Euphorbia viguieri 降水量1324mm

DSC_0106
Euphorbia guillauminiana 降水量1565mm

⑤thuarsiana clade
DSC_0111
Euphorbia neohumbdrtii 降水量1434mm

230521165130863
Euphorbia ankarensis 降水量1486mm
※=E. denisiana var. ankarensis

DSC_0112
Euphorbia pachypodioides 降水量1627mm

Section Denisoforbia
Denisophorbia節は、葉や茎は多肉質ではなく低木状です。E. hedyotoides(降水量708mm)やE. mahabobokensis(降水量757mm)は塊根を持ちます。 
DSC_1833
Euphorbia bongolavensis 降水量1500mm

Section Deuterocalii
Deuterocalii節は緑色のやや多肉質な茎をもつ棒状の植物です。E. alluaudiiやE. cedrorum(降水量396mm)があります。
DSC_0309
Euphorbia alluaudii 降水量780mm

昨日解説したように、やはり塊根性のものはより乾燥地に生える傾向は確かなようです。私もこの論文は非常に勉強になりました。例えば、E. pachypodioidesはあれほど高度に茎が多肉化しており、大量の水分を貯蔵していますから乾燥に強いと考えていました。しかし、E. pachypodioidesはかなり降水量が多い地域に自生していました。確かに、私はユーフォルビアは乾かし気味に育てていますが、E. pachypodioidesは葉を落としがちでしたし、今年は植え替えましたが思った以上に細根で如何にも乾燥に弱そうでした。これからは、水やりを多めに育てたいと思います。逆を言えば、塊根性のものは乾かし気味にする必要があるかも知れません。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

サボテンは砂漠の象徴であり、サボテンが生える荒野は乾燥した死の大地のように表現されたりもします。乾燥地に生えるサボテンはアメリカ大陸原産ですが、アフリカ大陸にはサボテンにそっくりなユーフォルビアが生えています。共通する水分を貯蔵した多肉質な茎と、トゲに覆われた姿は、乾燥地に適応した結果として類似した姿を取りました。これを収斂進化と言います。さて、サボテンやユーフォルビアなどの乾燥地に生える多肉植物は、当選ながら乾燥に強いと考えられますが、それは本当でしょうか? というのも、意外にもそんな基本的な事柄は今までほとんど調べられて来なかったからです。そんな基本的な事柄を調査したMargaret Evanceらの2014年の論文、「Insights on the Evolution of Plants Succulent from Remarkble Radiation in Madagascar (Euphorbia)」を見てみましょう。

多肉植物は乾燥条件により、葉や茎、根などの器官に水分を貯蔵するために肥大化させています。このような乾燥に対する形態と、気候条件の関係を調査しております。調査はマダガスカルで実施し、多肉質なユーフォルビアを対象にしています。扱われるユーフォルビアは、Goniostema節、Denisophorbia節、Deuterocalii節です。この3グループは近縁で、論文ではそれぞれの頭文字を取って「GDD clade」と呼んでいます。それぞれの節について少し解説します。

①Goniostema節は一般に花キリンと呼ばれ、花卉として様々な園芸品種が流通しています。その多くは木質化した枝から葉を出し、トゲがあるものも多く、塊根性のものもあります。

②Denisophorbia節は、葉や茎は多肉質ではなく低木状です。E. hedyotoidesやE. mahabobokensisは塊根を持ちます。 
③Deuterocalii節は緑色のやや多肉質な茎をもつ棒状の植物です。E. alluaudiiやE. cedrorumがあります。


さて、論文では葉が多肉質になるもの、サボテンのように幹が多肉質になるもの、塊茎や塊根を持つものの3つに区分しています。実際のユーフォルビアの自生地の環境を調べたところ、意外なことが分かりました。サボテン状のユーフォルビアより、塊茎・塊根を持つユーフォルビアの方がより乾燥に適応していたのです。もちろんこれは傾向ですから、すべてがそうではないかも知れません。しかし、なぜ塊茎・塊根植物は乾燥に強いのでしょうか? 著者らによると、塊茎・塊根植物は乾季には葉を落として休眠し、塊茎・塊根に貯蔵した水分で耐えることができるからだとしています。なるほど、サボテン状のものも塊茎・塊根のものも水分を大量に貯蔵出来るところは共通しますが、乾季の休眠という点においては塊茎・塊根植物の方が有利ということなのでしょう。サボテン状ユーフォルビアに貯蓄された水分は光合成に必要であるため1日単位の時間のに対する適応であり、塊茎・塊根ユーフォルビアは季節的な時間に対する適応である可能性があるとしています。

さらに言えば、その分布はサボテン状ユーフォルビアは高温と中程度の乾燥、塊茎・塊根状ユーフォルビアは低温と極度の乾燥が特徴としています。自生地の気候について一例を挙げると、サボテン状のE. pachypodioidesは平均気温25.9度、降水量1627mm、E. neohumbertiiは平均気温25.9度、降水量1434mm、E. viguieriは平均気温26.1度、降水量1324mmでした。対する塊茎・塊根状のE. rossiiは平均気温25.2度、717mm、E. cylindrifoliaは平均気温23.6度、降水量874mm、E. cap-saintemariensisは平均気温23.5度、降水量422mmでした。他の形態では、樹木状となるE. bongolavensisは平均気温26.6度、降水量1500mm、E. guillauminianaは平均気温26.5度、降水量1565mmでした。また、多肉質の棒状のE. alluaudiiは平均気温22.5度、降水量780mm、E. cedrorumは平均気温23.9度、降水量396mmでした。やはり、塊根性花キリンは降水量が少ない地域に生え、幹を太らせるタイプのユーフォルビアは相対的に降水量が多い地域に生える傾向が見受けられます。また、樹木状ユーフォルビアは乾燥にあまり強くないであろうことがわかります。さらに、意外にも棒状ユーフォルビアはかなりの乾燥地に生えるようです。ユーフォルビアはあちこちの分類群で多肉質な棒状の形態のものがあらわれ、世界中の乾燥地帯に分布します。このような形態が乾燥に強い理由は良くわかりませんが…

ただし、例外はあり塊根性ではない花キリンであるE. didiereoidesは平均気温21.0度、降水量856mmと乾燥地に生え、塊根性花キリンのE. francoisii(※)は平均気温22.9度、降水量1607mmと割と湿潤な地域に生えます。しかしその場合、それぞれの地域での何かしらの特殊な環境に適応した結果かも知れません。例えば、降水量は多いものの、土壌が礫質で排水性が極めて高い場合を考えた場合、水分の歩留まりが悪いので塊根が必要かも知れません。ですから、確実性を高めるならば、それぞれの植物の生息状況を詳しく調査する必要性があるかも知れません。

(※) E. francoisiiは現在はE. decaryiとなっています。今までE. decaryiと呼ばれていた植物はE. boiteauiとされています。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ 多肉植物へ
にほんブログ村

私の好きなギムノカリキウムの何か良い論文はないかと探っていたところ、Urs Eggli & Detlev Metzingの1992年の論文、『(1045)Proposal to Conserve the Orthography of 5408a Gymnocalycium Pfeiffer ex Mittler 1844 (Cactaceae)』を見つけました。しかし、残念ながら有料の論文で読めません。タイトルはギムノカリキウム属の名前を保存するための提案です。これはいったいどういう意味でしょうか? まあ、結局は読まないと何も分からないことが分かりました。試しにギムノカリキウムについて学名を少し調べてみましたが、何も分かりません。しかし、調べていくうちに余計なことに興味が目移りして、脱線を繰り返して無駄に情報が溜まってしまいました。特に意味はないのですが、だらだら情報を開陳していきたいと思います。

★Gymnocalycium Pfeiff. ex Mittler

Gymnocalycium属は1844年に創設されました。しかし、実際には1920年代くらいまではあまり使われず、新種はEchinocactusとして命名されていました。それはそうと、1944年に初めて命名されたGymnocalyciumは何でしょうか? ざっと調べた限りでは3種類見つかりました。それは、G. denudatum、G. gibbosum、G. reductumです。

①Gymnocalycium denudatum
              (Link & Otto) Pfeiff. ex Mittler
1つ目はデヌダツムです。1828年に命名されたEchinocactus denudatus Link & Ottoが1844年にGymnocalyciumに移されました。ちなみに、1837年にはCereus denudatus Pfeiff.と命名されたこともあります。種小名の末尾が変わっていますが、属が変更された場合によくあることです。また、1907年に至ってもEchinocactus denudatus f. octogonus (K.Schum.) Schellaが命名されており、Gymnocalyciumの浸透の悪さが分かります。

そういえば、Echinopsis denudatus (Pfeiff.) Bosseという名前も1860年に命名されていますが、何故かHomotypic Synonymではなく、Heterotypic Synonymとされています。これは異名の種類の話で、現在の正式な学名につながる名前はHomotypic Synonym、つながらない名前はHeterotypic Synonymです。G. denudatumの場合、基本的には「denudatum」あるいは「denudatus」という種小名がついたものはG. denudatumにつながる正式な学名の系統です。例えば、1898年に命名されたEchinocactus megalothelon Sencke ex K.Schum.は、G. denudatumを指しているものの種小名が異なるためHeterotypic Synonymとされます。では、Echinopsis denudatusはなぜHomotypic Synonymではなく、Heterotypic Synonymなのでしょうか? それは、おそらく正しく引用されていないからでしょう。属名を変更する際は前の学名を引用して、この論文でこの人が命名した学名を変更しますと説明する必要があります。「denudatum」あるいは「denudatus」系の種小名はEchinocactus denudatus Link & Ottoから始まりますから、引用するなら1828年のLink & Ottoを引用するべきです。しかし、Echinopsis denudatusはPfeifferを引用してしまっています。そのため、Heterotypic Synonymとされてしまったのでしょう。

②Gymnocalycium gibbosum
                 (Haw.) Pfeiff. ex Mittler
2つ目はギボスムです。1816年に命名されたCactus gibbosus Haw.、1826年にはCereus gibbosus (Haw.) Sweet、1828年にはEchinocactus gibbosus (Haw.) DC.と変遷がありました。
また、G. gibbosumには2005年に亜種が出来ました。G. gibbosum subsp. borthiiです。この亜種borthiiと区別するために自動的に亜種ギボスム、つまりG. gibbosum subsp. gibbosumも出来ました。この場合、亜種gibbosum+亜種borthii=G. gibbosumですから、亜種gibbosum=G. gibbosumではないので注意が必要です。さて、亜種gibbosumには異名が沢山ありますが、その1つが1903年に命名されたEchinocactus spegazzinii F.A.C.Weber ex Speg.です。天平丸=Gymnocalycium spegazzinii Britton & Speg.を連想させますが、まったく無関係という訳でもありません。天平丸を少しだけ調べてみましょう。 早くも脱線します。

天平丸は1922年にG. spegazzinii Britton & Roseと命名されていますが、少し奇妙なことがあります。一番最初の名前は1905年に命名されたEchinocactus loricatus Speg., nom. illeg.です。1925年にはGymnocalyciumに移され、Gymnocalycium loricatum Speg.となりました。しかし、なぜわざわざG. spegazziniiと命名したのでしょうか? E. loricatus→G. loricatumの系統で良い気がします。ヒントはE. loricatusの最後に付けられた「nom. illeg.」です。これは非合法名といい、命名規約の規則に従っていない部分があるということです。その理由は分かりませんが、記載に問題があったことは明らかです。さらに言うならば、Echinocactus loricatusという学名は他のサボテンにも命名されており、しかもそちらの方が命名が早いので、いずれにせよGymnocalycium loricatumは成立しえない学名です。そして、非合法名を根拠としたG. loricatumもまた認められないのです。
ちなみに、先に命名された「loricatus」は1853年に命名されたEchinocactus loricatus Poselg.で、現在のCoryphantha pallida subsp. pallidaの異名です。しかし、思うこととして、もしEchinocactus spegazziniiがGymnocalycium spegazziniiとされていたら、天平丸の学名はG. spegazziniiではなかっただろうということです。1920年代はEchinocactusからGymnocalyciumへの移行が進んでいたので、あり得ないシナリオではなかったはずです。

③Gymnocalycium reductum
                 (Link) Pfeiff. ex Mittler
3つ目はレドゥクツムです。1822年に命名されたCactus reductusが1844年にGymnocalyciumに移されました。しかし、よく調べると、1812年にCactus nobilis Haw., nom. illeg.が命名されています。しかし、これは非合法名です。実はCactus nobilisという学名はどういうわけか、様々な人により命名されています。命名が古い順に、1771年のCactus nobilis L., nom.superfl.(=Ferocactus latispinus subsp. spiralis)、1785年のCactus nobilis Lam., nom.illeg.(=Melocactus intortus)、1812年のCactus nobilis Haw., nom.illeg.(=Gymnocalycium reductum subsp. reductum)、1891年のCactus nobilis (Pfeiff.) Kuntze, nom.illeg.(=Mammillaria germinispina)がありました。すべて現存しない学名で、括弧の中が現在の学名です。しかし、1771年のvon Linneの命名は非常に古いにも関わらず、「nom.superfl.」とあります。これは、それより早く公開された同じ名前があるというのですから不思議です。調べて限りではこれより古い学名は見つかりませんでした。なにやら気になりますね。

とまあ、時代によりGymnocalyciumはEchinocactusだったりCereusだったりしますが、ギボスムやレドゥクツムに最初に付けられたCactus属とは何者でしょうか?

★Cactus L.

現行の学名のシステムは1753年にCarl von Linneにより作られましたが、Cactus属はその1753年にvon Linneにより命名されました。おそらく、当時知られていたサボテンはすべてCactus属だったのでしょう。結局、Cactus属から様々な属が独立し、最終的には消滅した現存しない属です。実はCactus属は現在Mammillariaの異名とされています。最初に命名されたサボテンは後のMammillariaだったのかもしれません。少し調べてみましょう。ただし、1753年のvon Linne以降もCactus属は命名され続けたので、膨大な種類があります。さすがにそのすべてとはいきませんが何種類か見てみましょう。

やはり、1753年当時に知られていたサボテンはすべてCactus属だったようです。様々なタイプのサボテンが所属していました。どうやら、団扇サボテンと柱サボテンが多かったみたいです。例えば、団扇サボテンではCactus tuna L.(=Opuntia tuna)、Cactus opuntia L.(=Opuntia ficus-indica)、Cactus cochenillifer L.(=Opuntia cochenillifera)、Cactus curassavicus L.(=Opuntia curassavica)、Cactus moniliformis L.(=Consolea moniliformis)などがあり、柱サボテンはCactus hexagonus L.(=Cereus hexagonus)、Cactus pervianus L.(=Cereus repandus)、Cactus heptagonus L.(=Stenocereus heptagonus)、Cactus pentagonus L.(=Acanthocereus tetragonus)、Cactus lanuginosus L.(=Pilosocereus lanuginosus)、Cactus royenii L.(=Pilosocereus polygonus)などがあります。他にも、Cactus pereskia L.(=Pereskia aculeata、杢キリン)、Cactus phyllanthus L.(=Epiphyllum phyllanthus)、Cactus triangularis L.(=Selenicereus triangularis) 、Cactus grandiflorus L.(=Selenicereus grandifloras、大輪柱、夜の女王)、Cactus flagelliformis L.(=Aporocactus flagelliformis、金紐)などもあります。また、玉サボテンはあまりないようで、Cactus melocactus L.(Melocactus caroli-linnaei)、Cactus mammillaris L.(=Mammillaria mammillaris)は見つけました。こんな状態で、なぜMammillaria属が旧Cactus属を代表しているのかは、よく分かりません。不思議ですね。

★Cereus Mill.
ついでに現在では柱サボテンが所属するCereusについても調べてみました。なんと、Cereus属はvon Linneが学名のシステムを作った翌年、1754年に命名されています。では、1754年に命名された種類はなにかと思い調べてみましたが、何故か見つかりません。不思議なことに、Cereus属の命名者であるPhilip Millerにより命名され認められた最初の学名は1768年でした。この14年のブランクにはどのような意味があるのでしょうか?
 

取り敢えず、Cereus属の基本的な情報から。1768年にMillerにより命名されたCereusは、現在ほとんど存在しません。別の属になりCereus名義の学名は異名となっています。すべて調べた訳ではありませんが、1768年に命名されたCereusたちは、現在Selenicereus、Stenocereus、Aporocactus、Harrisia、Pilosocereusなどになっているようです。現存するMillerが命名したCereusは、Cereus hexagonusやCereus repandusくらいかもしれません。どうにも歯切れが悪い言い方なのは、Cereusは異名だらけで数百種類あり、とてもではありませんがすべてを調べることは出来なかったからです。ちなみに、現在のCereusは30種くらいの小さな属です。

_20230511_222604
「The Gardeners Dictionary」

さて、では命名年の謎に迫ります。1754年にPhilip Millerが出版した『The Gardeners Dictionary』を見てみましょう。そこでは、Cereusは13種類が解説されています。しかし、学名はよく分かりません。というのも、「CEREUS」という名前は使われていますが、種小名がありません。ラテン語で特徴を羅列しているだけです。つまり、当時記載された13種が現在の何というサボテンに該当するのかがよくわからないのです。まとめると、Cereusという属名は提案されましたが、von Linneのシステムに乗っ取っていないため、1754年に命名された13種は認められなかったようです。

★Echinocactus Link & Otto
Echinocactusは1827年に命名されました。しかし、そのうち現在残っているのはEchinocactus platyacanthus Link & Ottoだけみたいです。同じく1827年に命名されたEchinocactus acuatus Link & Ottoは、現在Parodia erinaceusとなっています。


長々と書き連ねて来ましたが、まあこんな感じです。元は何の話だったのかすっかり忘れてしまい、あちらこちらと脱線しながら調べました。まあ、興味の赴くままの実にまとまりのない話です。
しかし、少し調べただけで、サボテンの学名は謎だらけでした。なんとなく分かるものもありますが、まったく分からないものもあります。ごく稀にこういった細かい部分を調べあげた論文もありますが、私のようにただ検索するだけではなく、実際の関係する論文をすべて読み込んでいるわけですから大変な労力が必要です。しかし、サボテンの学名はその異名の多さが物語るように、古い時代の学名には何かしらの問題を抱えていることは珍しくありません。調べられていないだけで、今後訂正が必要な名前のサボテンも沢山あるのでしょう。面白そうな論文がありましたら、ご紹介出来ればと思います。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

アロエの多くは、長い管状の橙・赤系統の花を咲かせ、蜜を求めて訪れた鳥により受粉する鳥媒花と考えられています。また、一部のアロエは比較的短い管状の白色かクリーム色の花を咲かせますが、これらは昆虫により受粉する虫媒花とされます。
_20230222_235018
Aloe parvula

DSC_2432
Aloe albiflora

しかし、実際に観察や受粉の確認を調査されたアロエは少ないのが現状です。過去の研究は非常に重要な知見ですが、それを証拠に未調査のアロエについて語ることは果たして出来るのでしょうか? 私は一部の結果からすべてを結論付けることは非常に危ういと思います。ですから、花粉媒介のシステムについて何か面白い論文はないか探ってみました。見つけたのが、C. Botes, P. D. Wragg, S. D. Johnsonの2009年の論文、『New evidence for bee-pollination systems in Aloe (Asphodelaceae: Aloideae), a predominantly bird-pollinated genus』です。

一般的にアロエの受粉には鳥が重要であり、蜜蜂はアロエの受粉に寄与しない、いわゆる蜜泥棒(盗蜜者)とされています。しかし、著者らは蜜蜂とアロエの関係を見直しています。論文で観察されたのは、淡いピンクがかったクリーム色の花を咲かせるAloe minimaと、明るい緑がかった黄色の花を咲かせるAloe linearifoliaです。自生地はアロエの蜜を訪れる太陽鳥が複数種分布する地域だそうです。
さて、まずは実験的にこれらのアロエの花を自家受粉させてみましたが、ほとんど種子は出来ませんでした。次にアロエを網で覆い鳥が入れない状態にした場合、蜜蜂は網目から侵入しアロエの蜜を吸いました。この場合は鳥の受粉への影響がない状態ですが、アロエは種子が出来ました。さらに、自家受粉はほとんどしないことも確認済みですから、これらのアロエは蜜蜂により受粉していることが明らかになったのです。
ということで、著者らは考えられていた以上にアロエの受粉には蜜蜂が重要かも知れないとしています。
花の特徴を調べたところ、2種類とも花は紫外線を反射しました。動物は目で捉えられる波長が異なるため、紫外線を見ることが出来る昆虫にとっては、紫外線の反射は意味があるようです。また、これらのアロエの花は揮発性物質を放っており、その香りは人間の鼻でもわかる強さです。香りはテルペノイドとベンゼノイドが主要なものでしたが、A. minimaは6種類、A. linearifoliaは実に17種類の香り物質が検出されました。実際にA. linearifoliaの方が香りは強いそうです。このような花の特徴は虫媒花の特徴とされているようです。


以上が論文の簡単な要約です。以前にも記事にしましたが、Aloe feroxの花の受粉は主に蜜を吸う専門家である太陽鳥ではなく、蜜を専門としない日和見の鳥が受粉の主体であるという面白い結果でした。この時、蜜蜂は受粉に寄与しないことが確認されています。しかし、Aloe feroxは巨大アロエであり、むしろ特殊な例かもしれません。この論文からは、多くの中型~小型アロエの受粉に蜜蜂が関与している可能性すらあるのです。今後、もっと沢山の種類のアロエの受粉について調査がなされるべきでしょう。
また、論文で調査されたクリーム色や薄い黄色などの淡い色合いで香りがある花には、一般的に蛾が訪れる蛾媒花が多い傾向があります。夜間の調査も必要ではないかと感じました。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

植物の種子はある程度は保存出来るものが多く、種の保存にとって種子の長期保存は有効な手段である可能性があります。種の保存には幾つかの方法がありますが、採取した植物を栽培して維持することは植物園や大学などの研究機関の重要な仕事です。しかし、同じ種類の植物でも遺伝的な多様性があることが本来の姿ですが、このような栽培個体は遺伝的な多様性が低いことが問題です。自生地での野生植物の消滅により栽培植物を移植しようとした場合に、その全てが株分けした遺伝的に均一なクローンだったり、血縁関係にある兄弟ばかりでは、種子が出来なくなりやがて消滅してしまいます。解決策は自生地と同じくらい遺伝的多様性を栽培植物で維持出来れば良いのですが、ただ1種類の植物を維持するだけで大変な労力と場所と資金がかかってしまいます。当然それは専門知識を持つ研究者が行わなければなりませんから、地球上の絶滅の危機に瀕している植物すべてをというのは明らかに無理でしょう。しかし、原産地から種子を回収して保存しておけば、将来の絶滅に備えることが可能です。沢山の種子を採取しておけば遺伝的多様性も保たれますし、人工的に栽培する場合と異なり場所も手間もかかりません。ですから、種子の保存に関しては興味があります。
確か、種の保存を目的として、実際に様々な植物の種子が凍結保存されていると聞いたことがあります。しかし、その凍結種子を撒いて植物が育ったという話は聞いたことがないため、気になっていました。なぜなら、一般的に生物を凍結すると細胞内の水分が凍ってしまい、氷の結晶が出来て細胞が破壊されてしまいます。解凍した肉や魚から赤い汁(ドリップ)が出るのは、これが原因です。種子は水分が少ないので細胞の破壊は免れるのでしょうか? また、凍った水分は凍結した時間が長くなると、やがて液体になる融解を経ずに直接気体になります。これを昇華と呼びますが、凍結種子は大丈夫なのでしょうか?

とまあ前提が長くなりましたが、要するに凍結種子が本当に芽生えるのかが気になっていた訳です。せっかくだから、多肉植物で何か関係がありそうな論文を探してみたところ、面白そうなものを見つけました。S.R.Cousins, E.T.F.Witkowski, D.J.Mycockの2014年の論文、『Seed strage and germinatiom in Kumara plicatilis, a tree aloe endemic to mountain fynbos in the Boland, south-western Cape, South Africa』です。タイトルの通りKumara plicatilisの種子を温度を変えて保存し、生存率を確認しています。ちなみに、このKumara plicatilisとは、いわゆるAloe plicatilisのことで、2013年にアロエ属から分離しクマラ属となりました。日本では「乙姫の舞扇」というあまり使われない名前もあります。

_20230501_010503
Kumara plicatilis

まず、実験の基本的な前提から見ていきましょう。K. plicatilisの新鮮な種子は2010年12月にRawsonville/Worcester近くの40個体から採取されました。採取した種子は茶色の紙袋に入れて実験室で3ヶ月保管されました(※1)。空の種子は除かれました。2400個の種子を300個×8に分け、さらにそれぞれを20個を1本の密封容器に入れました。
種子は4つの温度で、4ヶ月及び9ヶ月保管されました。設定された温度は、マイナス80度、4度、25度、研究室内の4つです。期間は12月から2月で、ヨハネスブルグでは夏にあたるそうです。

※1 ) K. plicatilisの種子は種子が出来た後、直ぐに種子を撒くとあまり発芽しません。ある程度の後熟期間を必要としています。

結果を見ていきましょう。
まずは発芽率です。12時間で昼と夜が切り替わる培養機で、日中は25度、夜間は15度に設定して発芽させました。マイナス80度で保存された種子は、保存期間に限らず発芽が早く、平均5.9日でした。逆に研究室内で保存された種子は平均7.8日で発芽しました。
また、18週間の間に発芽しない種子は、種子の生存を確認する試験(テトラゾリウム試験)を実施しました。つまり、試験後の種子は、①発芽した種子、②空になった死亡種子、③テトラゾリウム試験により生存を確認した種子、④テトラゾリウム試験により死亡を確認した種子、の4種類です。重要な①と③、さらには①と③を足した生存率を見ていきましょう。
4ヶ月保存した種子では、マイナス80度で①90.4%+③4.8%=95.2%、4度では①87.6%+③10.0%=97.6%、25度では①78.0%+③14.0%=92.0%、室内では①80.4%+③16.4%=96.8%でした。4ヶ月保存では種子を冷やした方が発芽率は良く、室内保存では種子の生存率は高いものの発芽率は低下しました。
次に9ヶ月
した種子では、マイナス80度で①39.6%+③52.4%=92.0%、4度では①39.2%+③50.0%=89.2%、25度では①79.6%+③15.2%=94.8%、室内では①88.8%+③4.8%=93.6%でした。不思議なことに、9ヶ月の保存では発芽率は種子を冷却した方が発芽率が低下したのです。

さて、著者らは①発芽率+③生存種子を重視しており、長期の低温条件が種子の休眠を誘発する可能性を指摘しています。一般的に秋に出来た種子が直ぐに発芽せず、一度低温にさらされることにより、春に種子が休眠から目覚めるというプロセスがあります。しかし、この場合は逆ですが低温による休眠の可能性も論文になっているようです。著者らは長期冷蔵は種子にとって環境ストレス要因であるとしておきながらも、逆に休眠状態に入ることは種子寿命を伸ばす可能性を上昇させるとしています。

以上が論文の簡単な要約です。
しかし、この論文にはまだ曖昧な部分があります。それは、テトラゾリウム試験で生存しているとは一体どういう意味を持つのかということです。胚乳や子葉が生存していても、幼根や幼芽の原器あるいは胚軸にダメージがあれば生存していても発芽は出来ないでしょう。生存していても発芽出来ないのなら、冷却による長期保存の利点はありません。著者らは種子寿命が伸びると言っていますが、発芽しない種子を一体どうしようというのでしょうか? よくわかりません。種子から胚を摘出して組織培養するのなら、あるいは可能なのかもしれませんが。
さて、論文を読むと実際に行われている種子の凍結保存に対して、ある種の疑念が湧きます。将来のために凍結された種子たちは将来、果たして無事に発芽出来るのでしょうか? もちろん、これはK. plicatilisというと1種類の植物に対してだけの結果です。しかし、凍結保存された種子たちが、その全ての種類で発芽試験が実施されているとは思えません。しかも、種の保存を目的とした場合、4ヶ月や9ヶ月どころではなく、最低でも数十年という保存期間が必要なはずです。種子の冷凍保存は本当に長期保存に最適な方法なのでしょうか? 個人的には組織培養したカルスを液体窒素につけておけば、何十年も保存可能なはずです。確かに組織培養に移行するのは手間がかかりますが、確実性は高い気がします。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

以前、アロエの葉の配置についてのBayerの見解を記事にしました。これは要するに二列性と三列性の話でした。

以下の記事をご参照下さい。
この時、コメント欄で「2/5葉序」ではないかというご指摘をいただきました。大変、有難いことです。
さて、この2/5葉序は葉が重ならないで、太陽光が満遍なく当たる上手い配置です。しかし、なぜこのような葉の配置となるのでしょうか? もちろん、進化の結果として適者生存の理によって、2/5葉序が選択されたのだと言ってしまえばそれまででしょう。それでも、進化は新たな機能の付加より、すでに存在するものの改変や転用が多いことを考えたら、2/5葉序も既存のシステムを利用しているような気がします。
とりあえずは、色々と広く浅く調べたところ、フィボナッチ数に行き当たりました。Wikipediaではフィボナッチ数の例としてヒマワリの花の螺旋状の構造を示しています。この螺旋状の構造は、何となく多肉植物のロゼット型を想起させます。まず、そこからスタートしましょう。

_20230218_213207~2
Aloiampelosに見られる葉序。葉が回転しながら重ならないように配置されます。

さて、とは言うものの、Wikipediaに書かれた沢山の数式を眺めていたところで、残念ながら私の頭では意味がまったく分かりません。介助してくれる本が必要です。調べたところ、近藤滋による『波紋と螺旋とフィボナッチ』(秀潤社、2013年)という本を見つけました。生物の形、例えば巻き貝の巻き方、羊などの角の巻き方、シマウマや魚の縞模様など、生物界に現れる様々なパターンについて解説している本です。
_20230429_004955
フィボナッチ数とは、連続した2項の和が次の項になる、ということらしいです。わかったようなわからないような感じですが、具体的には1、1、2、3、5、8、13、21、34、55…、という数列です。なるほど、1+2=3、2+3=5、3+5=8、5+8=13という規則ですね。
一般的に植物の花弁はフィボナッチ数が多く、パイナップルや松ぼっくりなどの螺旋構造もフィボナッチ数とされるようです。マーガレットなどのキク科植物の花の中央部分はよく見ると螺旋状で、右巻きの螺旋と左巻きの螺旋を数えると正にフィボナッチ数なのだそうです。試しに、螺旋状の構造をとるGymnocalycium saglionisとEuphorbia gorgonisで螺旋の本数を数えて見ました。
_20230409_192945
Gymnocalycium saglionisの右巻きの螺旋は7本。フィボナッチ数ではありません。
_20230409_192810
左巻きの螺旋は11本。うーん、フィボナッチ数ではありませんね。しかし、サボテンは稜が増えていくため、例として適切ではないかもしれません。このG. saglionisはまだ20cm程度で最大サイズではないため、稜が最大となった場合に、右巻き螺旋が8本、左巻き螺旋が13本になるのかもしれません。

_20230409_193449
Euphorbia gorgonisの右巻きの螺旋は13本。フィボナッチ数です。
_20230409_193343
左巻きの螺旋は8本。なんと、こちらもフィボナッチ数でした。

フィボナッチ数での葉の展開は黄金角という角度になっており、約137.507度ということです。確かにこのこの角度だと、葉が重ならないように葉が配置されます。しかし、よくよく考えたら約137.507度である必然性はないのかもしれません。なぜなら、例えば132度で葉が展開した場合、回転するようにしてつく葉が一回りして重なるのは、実に11枚後ということになります。11枚も葉があれば茎もそれなりに伸びて距離がありますし、そもそも太陽光は真上から当たるわけではありません。キク科植物の花に見られるフィボナッチ数は太陽光と何ら関係がないということを加味すると、フィボナッチ数は葉が重ならないように葉を展開するためという考え方は誤りである可能性があるのです。
著者はもっと機械的な見方をしています。植物は生長点から出る植物ホルモンにより新しい葉が生長しますが、植物ホルモンが古い葉に影響しないためにはどうしたら良いでしょうか。一つは植物ホルモンに濃度勾配がある場合、新しい葉の原基は古い葉の原基から距離があれば良いということになります。あるいは、古い葉に植物ホルモンを阻害する物質が出ているとしても、やはり同じことです。3枚前の古い原基の影響まで加味すると、影響を受けない理想的な角度は黄金角となるそうです。要するに、植物が螺旋構造を構築する際に、植物ホルモンの影響により必然的に黄金角となってしまうというのです。


本のおかげで基本的なことは分かりました。さらに調べたところ、2018年の岡部拓也の論文、『葉序の究極要因』を見つけました。論文では葉序は光合成効率には関係がないと、初めから明言されています。著者が言うには、計算上では光が当たる効率は葉序以外の要素の方が大きいということです。さらに、パイナップルや松ぼっくりなどの光合成しない器官の方が、規則性が正しく現れるということです。
さて、よく見られる葉の配列は2/5葉序と3/8葉序です。3/8葉序では葉が重なるまでに8枚の葉があり、茎を3周します。自然界に見られる開度には法則性があり、これをシンパー・ブラウンの法則と呼ぶそうです。最もよく見られる開度は1/2、1/3、2/5、3/8、5/13、8/21、13/34、21/55…、といういわゆる葉序の主列と呼ばれるものです。なにやら見覚えのある数字が並んでいますが、これは要するにフィボナッチ数です。螺旋葉序では2/5葉序でも3/8葉序でも、開度は変わらずに約137.5度です。黄金角ですね。これは、分数開度の極限値であり、137.5度は極限開度と呼ばれます。
そもそも開度が137.5度ならば、茎の伸長により主列は1/3、2/5、3/8、5/13…となるのは数学的必然です。フィボナッチ数を実現するために開度137.5度になっているのではなく、逆に開度が137.5度だから自然とフィボナッチ数になっているだけかもしれません。
とは言うものの、一般的に特定の植物に特定の葉序があるように書かれがちですが、実際には枝によって葉序が異なっていたり、同じ枝の根元と葉先では葉序が変化することもよくあることだそうです。これを、葉序転移と呼ぶそうです。

ここで面白いことが書いてありました。シンパー・ブラウンの法則のブラウンによると、ヤナギの尾状花序、スゲの穂、サトイモの肉穂花序、バンクシア、サボテン、トウダイグサ(Euphorbia)、ヒカゲノカズラの螺旋構造は例外的であるとしています。どうも、サボテンはフィボナッチ数とは関係がなさそうです。また、Euphorbiaはやはり無関係かと思いきや、Euphorbia gorgonisはばっちりフィボナッチ数でした。とはいえ、Euphorbiaと言っても広いですからね。多肉植物ではなく、草本のEuphorbiaを例に調べただけかもしれません。


開度137.5度からは様々な葉序系列が導かれますが、若い時には1/3、2/5、3/8などのより単純な葉序を経由します。いわゆる葉序転移ですが、この葉序転移にかかるコストを計算すると、開度99.5度と137.5度の時に最小となります。この事実も重要なファクターかもしれません。
また、葉は茎の維管束と繋がっていることから、維管束の配置とも関係があります。葉が縦列をなす傾向は維管束が縦に並ぶからであり、これが葉の原基のパターン形成に選択圧を及ぼすと考えられます。維管束は自由自在に出せないため、維管束の伸長が葉のつきかたを限定するのです。
葉は縦に規則的に並びますが、これが葉序の規則性を進化させる駆動力であり究極要因です。
よって、葉序は外部環境(日照)への適応ではなく、あくまで内部的な適応と考えた方が自然であるとしています。


始まりは二列性・三列性の話でしたが、2/5葉序を知ったことにより黄金角やフィボナッチ数に行き当たり、葉が重ならないからよく日が当たるという常識的な見方の否定にまで至りました。正直なところ、読んだ資料の全てを理解出来ておりませんし、内容的にも完全に証明された訳でもないように思われます。様々な可能性は示されますが、それを証明する手段がないような気もします。ただし、葉序により良く日が当たるからだという説明は、確かに間違いなのでしょう。今後、何か学術的に進展がありましたらまた記事にしたいと思います。まあ、あくまで私に理解出来る範囲の話ならばですが。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

サボテンは種類が多く趣味家も多いせいか、多肉植物の中では割と研究されている方だと思います。しかし、残念ながら私の好きなGymnocalyciumについての論文はほとんどありません。そんな中、去年発表されたばかりのGymnocalyciumの論文を見つけました。という訳で本日はMartino P, Gurvich E.D, Las Penas M.L.の2022年の論文、『DNA CONTENT AND CYTOGENETIC CHARACTERISTIC OF Gymnocalycium quehlianum (CACTACEAE) ALONG AN ALTITUDINAL GRADIENT』をご紹介します。

植物は標高により植生が変わることは一般的なことであり、世界中で見られる普遍的な現象です。それはサボテンも同様で、標高により異なるサボテンが見られます。Gymnocalyciumもまた標高により見られる種類が異なります。Gymnocalyciumは南アメリカに固有の属であり、約50種類からなります。一般的に地理的分布は狭いとされています。
Gymnocalycium quehlianumはアルゼンチンのCordoba州に固有で、Sierra ChicaからSierra Norteまでの、標高500~1200mの山岳に生えます(Charles 2009, Gurvich et al. 2004)。G. quehlianumは灰色がかった緑色で、小さな放射状のトゲを持つ肋(ribs)、奥が赤みを帯びた白い花を咲かせます(Charles 2009, Kiesling and Ferrari 2009)。ちなみに、G. quehlianumはTrichomosemineum亜属に分類されます。

瑞昌玉、竜頭、鳳頭などはGymnocalycium quehlianumの1タイプとされます。
DSC_1442
「瑞昌玉」
DSC_1446
「竜頭」
DSC_1449
「鳳頭」

さて、標高の変化は環境も変動しますから、遺伝的な違いが生まれている可能性があります。一般的に標高が高くなると気温は低下し日照は弱まります。環境に適応するために起こりうることが想定されるのは倍数体とゲノムサイズの変動です。生物は一般的に二倍体です。しかし、植物はゲノムが重複して三倍体や四倍体となったものも普通に見られます。倍数体は種分化と種の多様性のパターンに影響を与える要因です。取り敢えず過去に調べられた情報では、D. quehlianumは二倍体であるDNA量は6.46pg(2C)だったということです(Das and Das 1998)。

※1pg(ピコグラム)は1mgの10億分の1の重さ。

著者らはSan Marcos SierraとCamino del Cuadradoの標高勾配に沿う4つのG. quehlianum集団を調査しました。植生は亜熱帯乾燥林から温帯草地まで様々でした。今回の調査ではG. quehlianumは二倍体でした。さらに、2Cという部分のDNA量は、標高615mで4.3pg、標高744mでは3.83pg、標高948mでは3.89m、標高1257mでは3.55pgでした(※1)。また、1998年の論文では2Cは6.46pgでしたから、今回の結果と大分異なります。しかし、これは解析方法が異なり、この論文で用いた手法は非常に感度が高く正確な値であるということです。
この
ゲノムサイズの違いは、高温や乾燥への適応である可能性があります。また、著者らは2021年にこの4つの集団では遺伝的特徴よりも生態学的特徴の変動が大きいことを報告しています。

※ 1 ) 確かに違いはありますが、これだけだと615m>948m>744m>1257mとなり、標高と関連があるとは言いがたいように思えます。しかし、DNAの他の部分(4c, 8C, Cx)を見てみると、基本的に615m>744m≧948m>1257mであることが分かります。傾向としては、低地>中間地点>高地と言えるでしょう。

以上が論文の簡単な要約となります。
このように、新たな知見が得られたことは大変喜ばしいことなのですが、それなりに問題もあります。例えば、今回は標高を指標にしていますが、同じ標高の離れた地点ではどうなっているのでしょうか? 単純に距離が離れたものは違いが大きいというだけかもしれません。では採取地点の地形を見てみましょう。採取地点同士の距離と、集団ごとの隔離具合が分かります。その結果はやや微妙なものでした。というのも、山の低地から高地までの一直線上に生える4地点をイメージしていましたが、全く異なっていたからです。615mと744mの地点は割と近く、確かに一直線上の低地と高地でした。それでも16kmほどの距離があります。744m地点から948m地点まで30kmほどの距離がありますが、山を越えた場所なのでやや比較が難しいように思えます。しかし、距離があり山向こうでも、744m地点と948m地点のDNA量は似ていました。なんとなく、標高とゲノムサイズに相関があるような気がします。何れにせよ、調査地点を増やして関係を見ないと、意味があるのは垂直距離なのか水平距離なのかは断言出来ないでしょう。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

昨日に引き続きAloe of the world: When, where and who?』という論文をご紹介しています。昨日はアロエ属が誕生した1753年から、1930年までの約180年間のアロエの歴史を見てきました。本日は1930年代から、いよいよアロエ属の権威であるReynoldsが登場します。また、2000年以降は現在も活動している研究者の名前が現れます。また、例によって、所々に※印で私が注釈を入れました。では、アロエの歴史を見てみましょう。

1931~1940年
1930年代からアロエ属研究の第一人者であるG. W. Reynoldsが登場します。N. S. PillansやB. H. Groenewaldと共にアフリカ南部から膨大な数のアロエを記載しました。アフリカ南部からReynoldsは24種類、Pillansは9種類(1種類はSchonlandと共著)、Groenewaldは6種類を記載しました。ReynoldsのライバルであったH. B. Christianは南熱帯アフリカから8種類(1種類はE. Milne-Redheadとの共著)のアロエを記載しました。
O. Stapfはグラスアロエのために新属Leptaloeを創設しました(※7)。また、A. LemeeはA. Bergerのアロエの分類におけるSection Aloinellaeを属に格上げし、Aloinella Lemeeを創設しました(※8)。
他には、J. Leandriはマダガスカルの新しいLomatophyllumを、A. A. Bullockは東熱帯アフリカ、L. Bolusはアフリカ南部、I. B. Pole Evansはアフリカ南部、C. L. Lettyはアフリカ南部、A. Guillauminはマダガスカルから、それぞれアロエを1種類記載しました。
_20230321_192150
Aloe spectabilis Reynolds (1937年命名)

※7 ) Leptaloe属はAloe myriacanthaを5種類に分けていました。また、Aloe minima、Aloe parviflora、Aloe saundersiae、Aloe albidaが含まれていました。しかし、Leptaloe属は現在では認められていません。

※8 ) Aloinella属はAloe haworthioidesが含まれていましたが、現在では認められていません。
DSC_1815
Aloe haworthioides
=Aloinella haworthioides


1941~1950年
1940年代初頭にB. H. Groenewaldはアフリカ南部のアロエに関する本を出版しました。また、1940年代のReynoldsは、『The Aloes of South Africa』という画期的なアロエの本を出版するために集中したため、アフリカ南部のアロエはあまり記載されませんでした。しかし、1950年に出版されたReynoldsの本はアロエの標準的な教科書となりました。
その間に、H. B. Christianは南熱帯アフリカと東アフリカで活発に活動し、東熱帯アフリカから6種類、南熱帯アフリカから2種類(1種類はI. Verdoornとの共著)、北東熱帯アフリカから1種類のアロエを記載しました。Guillauminはマダガスカルから3種類のアロエと、Lomatophyllumを記載しました。
DSC_1988
Aloe descoingsii Reynolds (1958年命名)

1951~1960年
1950年代、Reynoldsはアフリカ東部と北東部、及びマダガスカルに注意を向けました。以前のReynoldsはリンポポ川の北は調査しないというChristianとの合意によりアフリカ南部に集中していましたが、1950年にChristianが亡くなったため調査範囲が広くなったのです。Reynoldsは42種類もの新種のアロエを記載しました。内訳はアフリカ南部から1種類、南熱帯アフリカから6種類、東熱帯アフリカから9種類、北東熱帯アフリカから17種類(6種類はP. R. O. Ballyとの共著)、西中央熱帯アフリカから7種類でした。
また、Christianの死後に4種類のアロエが記載されました。南熱帯アフリカから1種類、北東熱帯アフリカから1種類、東熱帯アフリカから2種類(I. Verdoornとの共著)でした。
D. M. C. DrutenはUrgineaとされていたAloe alooides (Bolus) Drutenをアロエ属としました(※9)。P. R. O. BallyとI. Verdoornは北東熱帯アフリカから1種類のアロエを記載しました。
A. Bertrandはマダガスカルのアロエのために新属Guillauminiaを提唱しました(※10)。


※9 ) Urginea属は現在Drimia属の異名とされています。Drimia、Albuca、Schizocarphus、Fusifilum、Dipcadi、Ledebouria、Prospero、Austronea、Ornithogalum、Trachyandraを含んでいた非常に雑多なグループでした。

※10 ) Guillauminia属には、Aloe albida、Aloe bakeri、Aloe ballatula、Aloe descoingsii、Aloe carcairophila、Aloe rauhiiが含まれていました。しかし、Guillauminiaは現在では認められていません。
DSC_2139
Aloe bakeri
=Guillauminia bakeri


1961~1970年
Reynoldsは熱帯アフリカとマダガスカルで調査を続け、1966年に『The Aloes of Tropical Africa and Madagascar』を出版しました。この本も出版から数十年に渡り標準的なアロエ属の教科書となりました。Reynoldsはマダガスカルから4種類、北東熱帯アフリカから3種類(2種類はP. R. O. Ballyとの共著)、東熱帯アフリカから4種類、南熱帯アフリカ~アフリカ南部から1種類、南熱帯アフリカから7種類、アラビア半島から1種類のアロエを記載しました。
1960年代、J. J. Lavranosはアラビア半島から6種類のアロエを記載しました。
他には、W. Rauhがマダガスカルから1種類、I. Verdoornはアフリカ南部から3種類、(1種類はD. S, Hardyとの共著)、L. C. Leachはまだ南熱帯アフリカから1種類、J. M. Bosserはマダガスカルから3種類、W. Giessはナミビアから1種類のアロエを記載しました。


1971~1980年
J. J. Lavranosはアロエ研究を続け、アフリカ南部から2種類、アラビア半島から3種類(2種類はA. S. Bilaidiと、1種類はL. E. Newtonと共著)、東熱帯アフリカから4種類(3種類はL. E. Newtonとの共著)のアロエを記載しました。
L. C. Leachは南熱帯アフリカで活発に活動し、南熱帯アフリカから10種類、北東熱帯アフリカから1種類のアロエを記載しました。
W. Maraisは2種類のLomatophyllumを記載しました。
他にはD. S. Hardyはアフリカ南部から2種類、W. Giessはナミビア、アフリカ南部から2種類(1種類はH. Mermullerとの共著)、G. D. Rowleyは北東熱帯アフリカから1種類、G. Cremersはマダガスカルから2種類、B. mathewは西中央熱帯アフリカ(コンゴ)から1種類、I. Verdoornは南部及び南熱帯アフリカから1種類、S. Carterは東熱帯アフリカから3種類(P. E. Brandhamとの共著)のアロエを記載しました。
また、この10年間でアフリカ南部のアロエに関する本は、例えば1974年のBornman & Hardy、1974年のJeppe、1974年のWest、1975年のJankowitzなどが出版されました。
IMG_20220209_005844
Aloe erinacea D. S. Hardy (1971年命名)

1981~1990年
H. F. GlenとD. S. Hardyはアフリカ南部のアロエ研究を開始しました。
W. Rauhはマダガスカルから2種類、J. J. Lavranosはアラビア半島から1種類と北東熱帯アフリカから1種類、L. E. Newtonは東熱帯アフリカから4種類(2種類は
H. J. Beentjeと、2種類はJ. J. Lavranosとの共著)、S. CarterとP. E. Brandhamは北東アフリカから1種類とアフリカ南部から1種類、E. J. van Jaasveldはアフリカ南部から3種類(1種類はK. Kritzingerとの共著)、J.R. I. Woodはアラビア半島で1種類、D. C. H. Plowesはアフリカ南部で1種類のアロエを記載しました。

1991~2000年
1990年代にはアフリカ南部のアロエに関する本が2冊出版(2000年のGlen & Hardyと、1996年のVan Wyk & Smith )されましたが、アフリカ南部からは新しいアロエは記載されませんでした。しかし、東アフリカのアロエ研究は増加しました。L. E. Newtonは東熱帯アフリカから8種類、北東熱帯アフリカから1種類、S. Carterは東熱帯アフリカから6種類(1種類はNewtonとの共著)、北東熱帯アフリカから1種類のアロエを記載しました。また、Sebsebe Demissewは北東熱帯アフリカから12種類(1種類はP. E. Brandham、1種類はM. G. Gilbert、1種類はM. Dioliとの共著)、J. J. Lavranosは北東アフリカから3種類(1種類はS. Carterとの共著)、マダガスカルから5種類(1種類はW. Röösliとの共著)、アラビア半島から9種類(7種類はS. Collenetteとの共著)のアロエを記載しました。
W. Rauhはマダガスカルの4種類(1種類はR. Hebding、1種類はA. Razafindratsira、1種類はR. Geroldとの共著)のLomatophyllumについて紹介しました。さらに、マダガスカルから4種類(1種類はR. D. Mangelsdorff、2種類はR. Geroldとの共著)のアロエを記載しました。

P. V. HeathはGuillauminiaを支持し、新属Leemea P. V. Heathを提唱しました(※11)。
他には、A. F. N. Ellertは南熱帯アフリカから1種類、P. FavellとM. B. MillerとA. N. Al Gifriはアラビア半島から1種類、J-B. Castillonはマダガスカルから2種類のアロエを記載している。

※11 ) LeemeaではなくLemeeaの誤記です。Aloe boiteaui、Aloe haworthioides、Aloe parvulaが含まれていました。Lemeea属は現在では認められていません。
DSC_1817
Aloe parvula
=Lemeea parvula


2001~2010年
L. E. Newtonは東熱帯アフリカから4種類と北東熱帯アフリカから1種類、J. J. Lavranosはアラビア半島から7種類(1種類はB. A. Mies、2種類はT. A. McCoy、1種類はT. A. McCoyとA. N. Al Gifri との共著)、北東熱帯アフリカから8種類(すべてMcCoyとの共著)、東熱帯アフリカから6種類(すべてMcCoyとの共著)、マダガスカルから17種類(8種類はMcCoy、1種類はM. Teissier、5種類はMcCoyとB. Rakouthとの共著)のアロエを記載しました。
G. F. Smithはアフリカ南部から5種類(2種類はN. R. Crouch、2種類はR. R. Klopper)を説明しました。E.
 J. van Jaasveldは8種類のアロエを説明しました。1種類はA. B. Low、3種類はA. E. van Wyk、1種類はW. Swanepoelとの共著です。

この10年最大のアロエ研究の貢献は、J-B. CastillonとJ-P. Castillonの親子でした。マダガスカルのアロエの21種類の組み合わせを説明し、5種類のアロエを記載しました。
他には、S. S. Laneは南熱帯アフリカから1種類、P. I. Forsterはマダガスカルから1種類、S. J. ChristieとD. P. HannonとN. A. Oakmanは北東熱帯ですから1種類、A. F. N. Ellertはコモロ諸島から1種類と南熱帯アフリカから2種類、S. Carterは北東熱帯アフリカから1種類と南熱帯アフリカから1種類、N. Rebmannはマダガスカルから4種類、S. J. Maraisはアフリカ南部から1種類のアロエが記載しました。B. J. M. Zonneveldはアフリカ南部から4種類のアロエを記載し、2種類は一部の研究者に認められています。
この10年間に出版されたアロエの本は、2001年のCarter、2004年のLane、2004年のSmith、2004年のRothmann、2008年のSmith & Van Wyk、2010年のCastillon & Castillonがあります。


2011年以降
2011~2013年の間には15種類のアロエが説明されています。Sebsebe Demissewは北東熱帯アフリカから4種類(1種類はTesfaye Awas、1種類はI. FriisとI. Nordalとの共著)、E. J. van Jaasveldはアフリカ南部から3種類(2種類はW. Swanepoel、1種類はP. nelとの共著)、南熱帯アフリカから1種類のアロエを記載しました。M. DioliとG. Powysは東熱帯アフリカから新種を説明しました。J-B. Castillonはマダガスカルから1種類、J-P. Castillonはマダガスカルから2種類、L. E. Newtonは東熱帯アフリカから2種類、G. F. Smithと
E. Figueiredoはアフリカ南部から2種類(1種類はN. R. Crouchとの共著)の組み合わせを公表しました。
アロエ研究の重要な2冊の本が出版されました。2011年の『The Aloe Names Book』はアロエの学名と異名につえて解説しており、同じく2011年のCarterの『Aloes: the Definitive Guide』はReynolds以来はじめて全種類のアロエを一冊の本にまとめたものです。


以上が論文の内容となります。個人的には学名関連の話が好きなので、大変面白い論文でした。しかし、この論文の後、遺伝子解析の結果によりアロエ属は解体されることになりました。2013年の論文を根拠とするAloidendron (A. Berger) Klopper & Gideon F. Sm.、Aloiampelos Klopper & Gideon F. Sm.、2014年の論文を根拠とするGonialoe (Baker) Boatwr. & J. C. Manning、Aristaloe Boatwr. & J. C. Manningがアロエ属から分離しました。また、2013年にはG. D. Rowleyにより1786年に命名されたKumara Medik.が復活しました。当然ながら、アロエ属から分離したのはごく一部でありほとんどのアロエは未だにアロエ属のままです。また、2019年に命名された新属Aloestrela Molteno & Gideon F. Sm.は、遺伝的にはどうやらAloidendronに含まれるようですが、現在はまだAloestrelaのままです。今後変わる可能性はあるのでしょうか?
このように、この論文と同時期に出た論文により、その後のアロエは一変しました。2011~2020年のアロエ属は思いもよらぬ激変を経験しました。2021年以降のアロエはどうなっていくのでしょうか?



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

Carl von Linneにより1753年に二項式の学名の記述方法が提案されアロエ属が誕生しました。つまり、Aloe L.です。しかし、実際にはそれ以前からアロエの仲間はヨーロッパで知られていましたが、ラテン語による特徴の羅列により記述されていました。von Linneによる1753年の『Species Plantarum』では、GasteriaやHaworthiaもアロエ属として記載されていました。これが、アロエ属の誕生に関する話ですが、それから270年ほど経ちアロエ属も激変しました。そのアロエ属の歴史を紐解いたRonell R. Klopper & Gideon F. Smithの2014年の論文、『Aloe of the world: When, where and who?』を見つけました。アロエの歴史を見てみましょう。ちなみに、2014年以降に学名が変更されたものもありますから、※印で私が注釈を入れました。

1753~1760年
von Linneが初めてAloe L.を記載しました。この中では、Aloe variegata L.のみが現在でもアロエ属として残されています。

1761~1770年
アロエ研究に貢献した最初の人物は、1768年に『Garden Dictionary』の第8版を出版したP. Millerでした。Millerは主に南アフリカから来た新しいアロエについて説明しました。
この時期に出版されたものとしては、N. L. Burmanによる『a new combination for Aloe vera (L.) Burm.f.』と、R. Westonによる南アフリカの1種類のアロエについてでした。

1771~1780年
1761~1763年にArabia Felix(現在のイエメン)でデンマークの遠征があり、同行したP. Forsskal
により初めてアラビア半島のアロエについて説明されました。しかし、1880年代後半までアラビア半島のアロエについては何もありませんでした。
この時期には、P. Miller、C. Allioni、F. Massonにより、南アフリカのアロエがそれぞれ1種類記載されました。
また、F. K. MedikusによりKumara Medik.が記載されました。(※1)

※1 ) Aloe plicatilisは、初めvon LinneによりAloe disticha var. plicatilisとされました。しかし、Aloe distichaとは現在のGasteria distichaのことです。このことが後に問題を引き起こします。MedikusがAloe plicatilisをKumara distichaと命名してしまったのです。正しく引用するならば、Kumara plicatilisとすべきでした。MedikusはAloe plicatilisをKumara属としたつもりでしたが、規約上ではGasteria distichaをKumaraとしてしまったのです。困ったことにGasteria属の創設よりもKumara distichaの方が命名が早かったため、規約上では現在のGasteria属はKumara属とする必要があります。ただし、規約に従うと大きな混乱を招くため、変更は行わず現状維持が提言され認められています。ちなみに、Aloe plicatilisはアロエ属から独立し、Kumara plicatilisとなりました。Medikusの提唱したKumara属が正しい引用により復活したのです。
DSC_2218
Kumara plicatilis
=Aloe plicatilis
=Aloe disticha var. plicatilis


DSC_1987
Gasteria disticha
=Aloe disticha


1781~1790年
J. B. A. P. M. C. de Lamarckはモーリシャス、東アフリカ、北東アフリカから1種類ずつのアロエを記載しました。また、C. Linnaeus jnr.(von Linneの息子=Linne filius)とA. Aitonは、アフリカ南部からそれぞれ新種のアロエを1種類記載しました。

1791~1800年
アフリカ南部ではC. P. Thunberg、R. A. Salibusy、C. L. Willdenow、A. P. de Candolleが新種を記載しました。de Candolleはアフリカ南部だけではなく、熱帯アフリカ北東部やアラビア半島、モーリシャスも記載しています。しかし、この1790年代に発表された10種類のアロエは、現在では使用されていないものです。

1801~1810年
1804年にA. H. Haworthはアロエ属の新しい分類を発表しました。また、Haworthはアフリカ南部から幾つかの新種を記載しましたが、現在ではそのうち2種類だけが認められています。
de Candolle、J. B. Ker Gawler、J. A. Schultesがアフリカ南部で、Willdenowはアフリカ南部とモーリシャスで新種を記載しましたが、現在では異名扱いとなり認められていません。

1811~1820年
Haworthはアフリカ南部から2種類、Reunion島から1種類のアロエを記載しました。Willdenowはアフリカ南部とモーリシャス、W. T. Aitonはアフリカ南部、Ker Gawlerはアフリカ南部とモーリシャス、Prince J. M. F. A. H. I. von Salm-Rifferscheid-Dick (Salm-Dick)はアフリカ南部で新種を記載しましたが、これは現在認められていません。
Willdenowは新属Lomatophyllum Willd.を提唱しました。Lomatophyllum(※2)はマダガスカルとマスカレン諸島に固有の液果を持つアロエです。
Medikusは樹木状のアロエであるRhipidodendron Medik.を提唱しました(※3)。
Ker Gawlerは主にマスカレン諸島の液果アロエをPhylloma Ker Gawlとして記載しました(※4)。現在、これらの新属はアロエ属とされています。

※2 )Lomatophyllum属は現在アロエ属に含まれることになりました。遺伝子を解析したところ、Lomatophyllumとされてきた種類同士が近縁ではなかったのです。離島で進化したアロエの収斂進化ということなのでしょう。

※3 )Rhipidodendron属は、Aloe dichotomaとAloe plicatilisを含むものでした。しかし、現在では認められていません。ちなみに、Aloe dichotomaはアロエ属から独立し、Aloidendron dichotomumとなりました。Aloe plicatilisは(※1)を参照。
DSC_1221
Aloidendron dichotomum
=Aloe dichotoma


※4 ) Phylloma属はLomatophyllumとされていたアロエのうち2種類が該当します。Aloe purpurea(=L. purpureum)をP. aloiflorumなど3種類に分けていました。また、Aloe macra(=L. macrum)はP. macrumとされました。

1821~1830年
Haworthはアロエの重要な研究をしており、アフリカ南部から10種類の新種を記載しました。さらに、Pachydendron Haw.を提唱しました(※5)。
W. J. BurchellとSalm-Dickは、それぞれアフリカ南部から1種類の新種を記載しました。J. A. SchultesとJ. H. Schultesは共同で2つのアフリカ南部のアロエの新しい名前と新しい組み合わせを発表しました。
H. F. Link、L. A. Colla、K. Sprengelはアフリカ南部、R. Sweetはマスカレン諸島、J. A. SchultesとJ. H. Schultesはアフリカ全域で、様々な新種を記載しましたが、その多くは現在使用されていないものです。

※5 ) Pachydendronはサンゴの化石につけられた学名ですからこれは誤りです。正しくはPachidendronです。Aloe feroxとAloe africanaが含まれていました。

1831~1840年
1830年代にはアロエに関する研究や出版物はあまりありませんでした。Salm-Dickがアフリカ南部、H. W. Bojerはマダガスカルとマスカレン諸島、E. G. von Steudelはアラビア半島とアフリカ南部で新種を記載しましたが、現在は異名とされています。1837年に出版されたBojerの『Hartus Mauritianus』は、マダガスカルとマスカレン諸島のアロエを記載した初めての記録です。

1841~1870年
この30年間はアロエ属はあまり変化がありませんでした。Salm-Dickがアフリカ南部から2種類の新種を記載しました。von SteudelはPhylloma属について整理しました。R. A. Salisburyは新属Busipho Salisb.を創設しました。BusiphoにはAloe feroxが含まれていましたが、現在では認められていません。

1871~1900年
この30年間はJ. G. Bakerがアロエ研究を独占しました。Bakerは生涯に42種類の新種と20の異名を記載しました。Bakerによりソコトラ島とマダガスカルのアロエの正式な説明がなされました。アロエ研究はアフリカ南部から始まり、東アフリカから北東の熱帯アフリカにまで及びました。アロエに関する沢山の著作として、1883年の『Contribution to the Flora of Madagascar』、1896年の『Aloe to the Flora Capensis』、1898年の『Flora of Tropical Africa』などが知られています。
A. Todaroは1880年代後半から1890年初頭にかけて、熱帯アフリカの北東部と西部の4種類のアロエを説明しました。1888年から1895年の間にH. G. A. Englerは、アフリカ南部から1種類、東熱帯アフリカから4種類のアロエを記載しました。
他には、W.T. Thiselton Dyerがアフリカ南部から1種類、I. B. Balfourがマダガスカルから1種類、G. F. Scott-Elliotがマダガスカルから1種類、A. B. Rendleが東熱帯アフリカから1種類、C. E. O. Kuntzeがアフリカ南部から1種類、W. Watsonが北東熱帯アフリカから1種類を記載しています。
A. Deflersは1885年から1894年の間にアラビア半島を探検しました。Forsskal以来120年ぶりにアラビア半島でアロエが調査されました。Deflersはイエメンとサウジアラビア南部に遠征し、Aloe tomentosa Deflersを記載しました。この間にG. A. Schweinfurthは熱帯アフリカ北東部から3種類、アラビア半島から2種類のアロエを記載しました。
DSC_1906
Aloe somaliensis C. H. Wright ex W. Watson
(1899年命名)


1901~1910年
この10年間の最も著名なアロエ研究者はA. Bergerで、アロエ属の新しい体系とモノグラフを含む研究を行いました。Bergerはアフリカ南部から9種類(うち2種類はH. W. R. Marlothとの共著)、南熱帯アフリカから2種類、東熱帯アフリカから5種類、北東熱帯アフリカから3種類、西部及び西中央熱帯アフリカから1種類、マダガスカルから3種類、コモロ諸島から1種類のアロエを記載しました。また、Bergerは新属Chamaealoe A.Bergerを提唱しました(※6)。
S. Schonlandは1900年代にアフリカ南部のアロエを研究し、9種類の新種を記載しました。
その他には、J. G. Bakerは、H. G. A. EnglerとE. G. Gilgは南熱帯アフリカ、I. B. Balfourはソコトラ島、G. KarstenとH. Schenckは北東熱帯アフリカ、A. B. Rendleは東及び西中央熱帯アフリカ、Marlothはアフリカ南部から新種のアロエを記載しました。

※6 ) Chamaealoe属はChamaealoe africanaからなる属でした。これは現在のAloe bowieaのことです。A. bowieaは初めは1824年にBowiea africana Haw.と命名されました。しかし、Bowiea属からアロエ属に移る際に、すでにAloe africana Mill.というアロエが1768年から存在したため、Bowiea africana→Aloe africanaという移行が出来ませんでした。そのため、1829年にAloe bowiea Schult. & Schult.f.と命名されました。Chamaealoe africana (Haw.) A.Bergerは1905年に命名されましたが、現在では認められていません。
DSC_1607
Aloe bowiea
=Chamaealoe africana


1911~1920年
I. B. Pole Evansはアフリカ南部から14種類のアロエを記載しました。他には、S. Schonlandがアフリカ南部、A. Bergerは南部及び南熱帯アフリカ、A. B. Rendleは南熱帯アフリカから2種類、J. DecorseとH. -L. Poissonはマダガスカルから、それぞれアロエを記載しました。

1921~1930年
R. Decaryはマダガスカルから3種類のアロエと、後にアロエ属に移されたガステリアを記載しました。
1926年にマダガスカルのアロエとLomatophyllumに関する重要な本がJ. M. H. A. Perrier de la Bathieにより出版され、22種類のアロエが新たに記載されました。また、Decaryによりガステリアとされたアロエは、Aloe antandroi (Decary) Perrierとされました。Perrier de la BathieはLomatophyllumの6種類の新種を記載しました。
他には、P. Danguyがマダガスカル、E. Chiovendaは北東熱帯アフリカから2種類、E. A. J. de Willdermanは西中央熱帯アフリカ、A. Bergerはアフリカ南部、M. K. Dinterはアフリカ南部、N. S. Pillansはアフリカ南部、L. Guthrieはアフリカ南部からアロエを記載しました。

さて、記事が長くなってしまったので、一度ここで切ります。内容的にもアロエ属の権威であるReynoldsが1930年代から登場します。明日に続きます。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

ソテツの根にはサンゴ根と呼ばれる不思議な形状の根があります。これは何かと言えば、細菌(バクテリア)がソテツと共生関係を結んだものです。植物と細菌の共生と言えば、マメ科植物の根粒が有名です。マメ科植物の根粒は、大気中の窒素ガスを固定してアンモニアに変換することが出来ます。植物は大気中の窒素を利用出来ませんが、アンモニア態窒素は栄養分として利用可能なのです。
さて、このソテツのサンゴ根は古くから研究されてきたようですが、最新の研究成果をまとめた論文を見つけました。Aimee Caye G. Chang, Tao Chen, Nan Li & Jun Duanによる2019年の論文、『Perspectives on Endosymbiosis in Coralloid Roots : Association of Cycas and Cyanobacteria』です。なるほど、サンゴ根はそのまま「Coralloid Roots」なんですね。というより、サンゴ根という言葉自体が英語から来ているのかもしれません。
DSC_2456
Dioon spinulosumのサンゴ根は地際に形成されていました。

ソテツのサンゴ根と共生する細菌は、意外にも光合成をする細菌です。いわゆる、藍藻(藍色細菌、シアノバクテリア)と呼ばれている細菌で、一見して藻のように見えます。しかし、遺伝子が核膜に包まれておらず、細胞質中に浮かんでいる状態です。これを一般的に原核生物と呼び、藍藻は葉緑体の元になった細菌であると考えています。一昔前には日本でも河川や湖沼に生活排水が処理されずに垂れ流した結果、富栄養化によりアオコと呼ばれる藍藻が増殖し腐敗して異臭を放ったりしました。まあ、この富栄養化は洗剤にリンが含まれていたことが原因だったようで、現在では洗剤にリンはほぼ含まれなくなりました。
さて、わざわざ地中にある根に共生する細菌が光合成できても意味がないような気がしますが、個人的な感想ではサンゴ根は浅いところに出来やすいように思われます。なお、ソテツと共生する藍藻は主にネンジュモです。ネンジュモは緑色の珠を数珠繋ぎに連ねたような藻です。実際にサンゴ根を切って断面を見るとと外皮側に薄く緑色の層があり、藍藻が存在することが分かります。

サンゴ根の形成に先立って、プレ・サンゴ根(precoralloid roots)を形成します。この段階では藍藻は存在しないのにプレ・サンゴ根は形成されます。このプレ・サンゴ根が藍藻との共生のために形成されるものかどうかは、実はよく分かりません。他に何か機能がある可能性もあります。しかし、現実的にプレ・サンゴ根にネンジュモが感染することにより、サンゴ根が形成されるのです。
DSC_2365
Dioon eduleの根に形成されたサンゴ根ですが、プレ・サンゴ根あるいはサンゴ根の初期段階と思われます。

しかし、窒素ガスというのは利用しようと思うと、大変厄介な存在です。なぜなら、窒素ガスは窒素原子が2つ結合したものですが三重結合によりがっちり連結しており、様々な物質に反応を示さない不活発な分子だからです。ですから、窒素は大気の78%を占めるにも関わらず安定しており、我々が呼吸のために大量に吸い込んでも何も起こりません。しかし、ネンジュモは空気中の窒素ガスをニトロゲナーゼという酵素で、三重結合を解離させ水素と結合させて生物が利用可能な形とするのです。

DSC_0198
Zamia furfuraceaのサンゴ根はDioonとは形が異なります。

藍藻はいつでもニトロゲナーゼを使うわけではなく、通常は周囲に栄養分が不足している場合に使われます。この時、藍藻は普段の細胞よりわずかに大きいヘテロシスト(heterocysts)という形態になります。ニトロゲナーゼは酸素で不活性化してしまうため、細胞に厚い壁を持ったヘテロシストにより酸素を遮断出来るようです。しかし、サンゴ根ではソテツとの共生関係のためだけに、藍藻はヘテロシストを形成します。
また、藍藻はヘテロシスト以外にもいくつかの形態に変化します。運動性がありソテツの出す化学物質に反応して感染に関与すると言われているhormogoniumや、環境の悪化によりakinetesと呼ばれる胞子になります。akinetesは寒さや乾燥に強く、60年以上耐えることが出来ると言います。

DSC_0195
Zamia integrifolia(異名Zamia floridana)のサンゴ根は青みがかり、藍藻がいることが分かります。

2019年にはソテツ(Cycas revoluta)の根から、hormogoniumを誘導する因子(
diacylglycerol 1-palmitoyl-2-linoleoyl-sn-glycerol)を単離することに成功しているそうです。そこで、考えられるサンゴ根が形成される筋書きは以下の通りです。まず、ソテツはプレ・サンゴ根を形成し、誘導因子を分泌し移動性があるhormogoniumを誘引します。hormogoniumはプレ・サンゴ根に感染しますが、このままだと取り込まれた藍藻は窒素固定を行いません。なぜなら、窒素固定は藍藻がヘテロシストとなる必要があるからです。そこで、藍藻が感染したらhormogonium誘導因子の放出を停止し、取り込まれた藍藻はヘテロシストの形態へ移行し窒素固定を開始するのです。ちなみに、hormogonium誘導因子の放出を抑制する遺伝子が1997年に発見されているそうです。
DSC_1416
Cycas revoluta

以上のように様々なことが分かりつつあります。しかし、サンゴ根形成のメカニズムはいまだに分かっておらず、ソテツとネンジュモの関係も明らかとなっていない部分が沢山あります。著者らはこれらの研究には限界があるとしています。まず、感染実験が必要ですが、ソテツの生長を考えると非常に長期に渡る試験となる可能性があります。では、in vitro(試験管内)で実験するにせよ、サンゴ根の組織培養の方法を構築することから始めなければならないでしょう。
この論文自体がソテツのサンゴ根研究の成果をまとめた、ある種の一里塚のようなものです。ここから論文に記された研究の道筋をゆっくりと進展していくのか、それとも革新的な技術の開発で一気に解決してしまうのか、まあそれは都合の良すぎる話ですが、今後の研究を私もゆっくり待ちたいと思います。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

Welwitschia mirabilisはナミブ砂漠に生える奇妙な植物です。生長点から出る2枚しかない葉が一生伸び続け、先端は枯れて葉が裂けるため、何枚も葉があるように見えたりします。ほとんど雨が降らない地域にも生えるため、1本の根が伸び続けて地下水を利用しているのだと言います。推定寿命は400~1500年と非常に長命な植物です。日本では「奇想天外」なる妙な名前もあります。
さて、Welwitschiaは砂漠の植物ですから、CAM植物ではないかと言われて来ました。これは光合成の方法に関する話です。少し解説しましょう。一般的に日本に自生する植物の多くはC3植物です。C3植物は取り込んだ二酸化炭素を、炭素が3つからなる物質に変換します。しかし、乾燥地の植物にはC4植物とCAM植物が多く、取り込んだ二酸化炭素を炭素が4つからなる物質に変換します。光合成するためには気孔を開いて二酸化炭素を取り込む必要がありますが、乾燥地では日中に気孔を開くと蒸散により水分が逃げてしまいます。ですから、C4植物やCAM植物は日中は気孔を閉じていて、夜間に二酸化炭素を取り込んでおくのです。さらに、CAM植物は取り込んだ二酸化炭素を最終的にリンゴ酸に変換して水分に溶かした状態で貯蔵することが出来ます。Welwitschiaは極端な乾燥に耐えるためにCAM植物であろうと考えることは、何らおかしなことではありません。しかし、驚くべきことにWelwitschiaはCAM植物ではなく、C3植物だということが分かりました。つまりは、光合成をするために日中気孔を開いてガス交換をして、大量の水分を蒸散により失っているのです。つまりはWelwitschiaは生長が遅く不活発な印象とは裏腹に、大量の水分を地下深くから吸い上げて、吸い上げた水分を大量に蒸散により失うかなり動的な植物なのです。


DSC_1237
奇想天外 Welwitschia mirabilis
(神代植物公園)


本日はWelwitschiaと菌との関係性を調査したK.M.Jacobson、P.J.Jacobson、O.K.Miller.Jr.の1993年の論文、『The mycorrhizal status of Welwitschia mirabilis』をご紹介しましょう。当ブログでは植物と菌との共生関係=菌根について度々取りあげていますが、多くの植物は菌類と共生関係を結び様々な恩恵を受けていることが明らかとなっています。極めて乾燥した地域に生える直根しかないWelwitschiaには菌類との共生は縁がないような気もします。しかし、何事も実際に確かめなければ確証は得られないものです。著者らはナミブ砂漠の7つの地域で、Welwitschiaの根を調べています。ただし、植物を傷付けない非破壊調査であるため、岩のひび割れに生えるWelwitschiaは流石にお手上げだったということです。

さて、先ほどから菌だとか菌類などと呼んできましたが、今回の調査はアーバスキュラー菌根菌を対象としています。アーバスキュラー菌根菌は植物の根の組織内に入り込んで、まるで植物の根と一体となったかのようなアーバスキュラー菌根を形成します。アーバスキュラー菌根は植物の80%以上で確認されている汎用性が高い菌根菌です。
さて、まずはW. mirabilisを調査した7つの地域について見てみましょう。1つ目(A)は浅い砂質土壌がある狭い渓谷で、Euphorbia phyllocladaなども生えていました。2つ目(B)は1つ目地域で乾燥した一年草が見らる場所です。3つ目(C)は広大な砂利の平野で、何百ものW. mirabilisが、干上がって固まった石膏からなる水路の跡に生えていました。他の植物はまばらで、ZygophyllumやArthraeruaなどが生え、枯れた一年草の残骸がありました。雨が降るとその時だけ一年草が生えるのでしょう。4つ目(D)はMessum川の南です。硬い石膏からなり、掘ると地下には岩がある状態でした。W. mirabilis以外ではZygophyllumのみが見られました。5つ目(E)はSamanab川の浅い岩だらけの水路と隣接する砂利からなる平野です。Zygophyllumが唯一の多年草です。6つ目(F)は5つ目の河川の土手で、ZygophyllumとStipagrostisが見られました。7つ目(G)は岩だらけですが、密に草に覆われていました。

全体的な特徴は7つ目以外は、Welwitschiaと他の種類の植物が2~10mも離れて生えていたことと、降雨量が0~100mmと非常に少ないことです。また、7つ目だけは降雨量が150~200mmと比較的雨が降る環境でした。
A、D、Fでは5つのサンプルでは菌根を確認出来ませんでした。また、CとEでは菌根を持たないものもありましたが、よく発達した菌根を持つものもありました。FとGはすべての個体で菌根が確認されました。
また、土壌中の菌根菌の胞子を調べたところ、W. mirabilisの菌根がない個体では胞子は見つかりませんでした。また、Gにおいては菌根がよく発達し、胞子濃度も非常に高いものでした。
W. mirabilisにどのようにして菌根菌が広まるのか、2つのシナリオがあります。1つは風で胞子が拡散する可能性です。しかし、平野部の地面は石灰質で覆われており、飛んできた胞子が定着することは難しいかもしれません。そうなると、雨が降った時だけ生える一年草の根に感染した菌根菌が由来なのでしょう。なぜなら、一年草が生えるくらい雨が降り、W. mirabilisの周囲に一年草の枯れ草がある場合にW. mirabilisに菌根が見られたからです。

以上が論文の簡単な要約となります。極めて厳しい環境に生えるW. mirabilisには、通常の手段では菌根菌も近寄ることが出来ないことが分かります。しかし、一年草が生える環境では、一年草から菌根菌がやってくるのです。しかし、極地の植物であるWelwitschiaですら、菌根を形成することがあるということに驚きます。ただ、この論文では菌根の存在を確めはしましたが、菌根菌がWelwitschiaに如何なる恩恵をもたらしているのかは、まったく不明です。とは言うものの、それを確めるにはWelwitschiaをポットに植えて人工的に菌根菌を接種したグループとしていないグループを比較する必要があります。しかし、根が極めて長いWelwitschiaのポット栽培は中々困難かもしれません。また、差がはっきりするくらい栽培するとなると、生長が遅いため非常に長期間の栽培が必要でしょう。1年ならまだしも5年10年、あるいはそれ以上となる可能性もあります。あまり、現実的とは言えないかもしれませんね。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

花キリンとはユーフォルビアに属するマダガスカル原産の低木です。赤や白、ピンクなどのユーフォルビアにしては目立つ花(実際には花弁ではなくて苞)を持つEuphorbia milii系(※1)は、園芸店で様々な品種が販売されています。 しかし、花キリンにはE. milii系だけではなく、様々なタイプがあります。その中には小型で、多肉質の時に縮れた葉を持つ塊根性のものもあります。その代表的な種類は、Euphorbia decaryiやEuphorbia francoisiiでしょう。しかし、E. decaryiやE. francoisiiという名前は間違っているのだというJ.-P.Castillon & J.-B.Castillonの論文が出ています。しかし、J.-P.Castillon & J.-B.Castillonの論文はフランス語で書かれており、残念ながらフランス語が分からない私には読むことが出来ませんでした。一応、機械翻訳をかけてはみたのですが、学名や専門用語が多いせいかは分かりませんが実に酷いもので、何を言っているのかさっぱり分かりませんでした。一文一文を丁寧に単語から翻訳していけば、おそらくは理解出来るのでしょうけど、あまりに面倒臭いので見て見ぬふりをして放置していました。

(※1) 2021年に定義が曖昧だったE. miliiは再定義され、流通している良く目にする花キリンはEuphorbia splendensとされています。本来のE. miliiは先端をカットしたような葉を持つものに限定されるとのことです。まだ論文の要約しか読んでいませんから、そのうち詳細をご紹介出来ればと考えております。

さて、本日ご紹介するのは、2021年のTiomas Haevermans & Wilbert Hetterscheidの論文、『Taxonomy decisions and novelties in the informal Euphorbia decaryi group from Madagascar』です。なんと、J.-P.Castillon & J.-B. Castillonの論文の内容を踏まえて、Euphorbia decaryiと関連のある仲間をE. decaryiグループとして、新たに再構成しています。私が読むことが出来なかった論文の内容も英語で解説されており、非常に助かりました。

①E. decaryiとE. francoisii
まず、2016年にJ.-P.Castillon & J.-B.Castillonにより、いくつかの名前が混乱したユーフォルビアについて、標本などの資料から正しい学名を明らかにしました。一般的にEuphorbia francoisiiと呼ばれている花キリンは実はEuphorbia decaryiのことで、今までEuphorbia decaryiと呼ばれていた花キリンはEuphorbia boiteauiだというのです。
DSC_0085
一般的にE. francoisiiの名前で販売されているこの花キリンは、実はE. decaryiでした。つまり、E. francoisiiという学名は異名となります。(※2)

(※2)とはいえ、市販されるE. francoisiiは複雑に交配されており、様々な種類が混じっている可能性があります。

_20230318_210719
一般的にE. decaryiの名前で販売されているこの花キリンは、実はE. boiteauiとのことです。

②E. decaryiの変種についての概要
次にE. decaryiには3つの変種がありましたが、2016年のJ.-P.Castillon & J.-B.Castillonは、2つの変種をE. boiteauiの変種としました。つまり、E. decaryi var. spirosticha →E. boiteaui var. spirosticha、E. decaryi var. ampanihyensis →E. boiteaui var. ampanihyensisという変更です。しかし、3つ目の変種であるE. decaryi var. robinsoniiは、これが「真の」E. decaryi(本来のE. decaryi)であるのか、E. suzanneae-marnieraeのことを示しているのか曖昧なため、学名は現状維持で変更されませんでした。著者らはJ.-P.Castillon &  J.-B.Castillonの意見に基本的には同意しますが、異なる意見も持っています。著者らはE. boiteaui var. ampanihyensisはE. boiteaui var. spirostichaと同種であり、独立種であるEuphorbia spirostichaであるとしています。
また、旧・E. francoisii系(本物のE. decaryi)の変種であるE. francoisii var. crassicaulisをJ.-P.Castillon & J.-B.Castillonは本来のE. decaryiの変種としてE. decaryi var. crassicaulisとしました。しかし、著者らは独立種であるEuphorbia crassicaulisとしています。

③E. cap-saintemariensisは独立
さて、1984年にCremersはE. decaryiグループについて記載しました。それが、E. decaryi var. ampanihyensis、E. decaryi var. robinsonii、E. decaryi var. cap-saintemariensisです。しかし、var. cap-saintemariensisをE. decaryiの変種とすることはRauh & Buchlohにより批判され認められた学名ではありません。J.-P.Castillon & J.-B.Castillonは、var.cap-saintemariensisをE. boiteauiとせずに、独立種たる特徴があるとして1970年に命名された最初の名前であるE. cap-saintemariensisを受け入れました。

DSC_2298
Euphorbia cap-saintemariensis

④var. spirostichaとvar. ampanihyensis
E. decaryi var. ampanihyensisはE. boiteaui var. ampanihyensisとされましたが、Cremersの言うところのvar. ampanihyensisの茎や葉が小さいなどの特徴はE. boiteauiと一致しません。Cremersにより強調されたvar. ampanihyensisは、葉と杯状花序苞(※3)の至るところに「腺」が存在するということです。この「腺」は、実際には腺機能はない肥大した円錐形の乳頭様の細胞です(※4)。確かに、その「腺」はE. decaryi var. ampanihyensisのパリにあるホロタイプ(模式標本)と、Boisser自身が作製したカラースライドで見ることが出来ます。
E. decaryiグループのいくつかでは、葉や茎、杯状花序苞の表面に「乳頭細胞」が見られます。「乳頭細胞」が多いE. tulearensisや、数が少なくしばしばより小さく面積が狭いE. boiteauiやE. suzannae-marnieraeがあります。これらの観察から、著者らはE. boiteaui var. ampanihyensisの匍匐根系(※5)、「乳頭細胞」の形態と分布、茎、斑点、葉、杯状花序苞のサイズと形態は、E. spirostichaとの密接な関係を示しているように見えます。E. spirostichaの現生植物の特徴はE. decaryi var. ampanihyensisと一致しますが、一見すると茎の形に違いがあるようです。E. spirostichaの茎は大抵は丸みがあり、葉の落ちた跡は螺旋状に並び、古い茎には跡が残らず滑らかです(※6)。しかし、1984年のCremersの記述ではE. decaryi var. ampanihyensisの茎は角張っているが、跡は残らないとしています。とはいえ、実際の生きた標本は角ばり、また様々な段階の茎があり、強い螺旋状から弱い螺旋状、あるいは直線的なものもあります。このように、E. spirostichaは言われているよりも多様であることが分かります。結論として、1984年のCremersの示すE. decaryi var. ampanihyensisは、1986年のRauh & Buchlohの示すE. decaryi var. spirostichaは同じであるということが示唆されます。また、本来ならば先に命名された名前が優先されますが、var. ampanihyensis(1984年)よりもvar. spirosticha(1986年)の方が広く知られているため、著者らは敢えてvar. spirostichaを優先し、E. spirostichaと命名しました。

(※3)ユーフォルビアの花には花弁がなく、一見して花弁に見えるのは苞。Cyathophyll.
(※4)「腺」とは一般的に液体を分泌する構造を示します。
(※5)stoloniferous roots system. 
下の写真は鉢から抜いたE. boiteauiですが、太く白いものは根ではなく地下茎です。

DSC_1369

(※6)E. boiteauiは角張った茎を持ち、葉の落ちた跡は直線的で、古い茎には跡が残ります。下の写真のE. boiteauiは、分岐の根元まで突起や葉の落ちた跡が残っています。
_20230321_084502

⑤var. robinsoniiとは?
1984年にCremersはE. decaryi var. robinsoniiを報告しました。2016年のJ.-P.Castillon & J.-B.Castillonは、var. robinsoniiに関してはE. boiteauiあるいはその他の種に移動させませんでした。Cremersの示したvar. robinsoniiの分布地域をJ.-P.Castillon & J.-B.Castillonが数回訪れましたが見つけることが出来ませんでした。著者らはCremersの標本を探しましたが残念ながら追跡出来ませんでした。J.-P.Castillon & J.-B.Castillonは、この曖昧な状況と、E. decaryi、E. suzannae-marnierae、E. waringiaeとの類似性がありはっきりと判断出来ないことから、E. decaryi var. robinsoniiの名前は維持されることになりました。
しかし、著者らは地理的な不確実性にも関わらず、var. robinsoniiはE. suzannae-marnieraeであると考えています。1984年のCremersの記述に手がかりがあります。ホロタイプのE. decaryi var. robinsoniiは、塊根と長い葉柄があり、縁が波状の幅の狭い披針楕円形から狭菱形の葉には特に上面に「腺」があるとしています。
類似性があるとされるEuphorbia waringiaeは、菱形の葉ではなく狭披針形から線状であり、托葉全体に縁があるため除外出来ます。しかし、CremersのE. decaryi var. robinsoniiは縁全体に托葉があります。いわゆるE. francoisii(本当のE. decaryi)は様々な形状の葉があり、Cremersの言うvar. robinsoniiの披針形や菱形のものもありますが、葉には乳頭はなく滑らかで光沢があります。また、Cremersはvar. decaryiは典型的なE. decaryiよりもかなり小さいと述べています。CremersはE. francoisii var. francoisiiの名前も使用していますが、これはおそらくEuphorbia crassicaulisに基づいています。
以上からvar. robinsoniiはE. suzannae-marnieraeであると著者らは考えています。乳頭状の葉の上面と葉柄が狭く菱形で基部が短く、狭く長い葉などの特徴など、E. suzannae-marnieraeと一致します。栽培するとE. suzannae-marnieraeは匍匐根を持ち直立する傾向があります。


⑥新種E. decaryi var. durispina
近年、Euphorbia decaryi var. durispinaというラベルがついた植物が導入されています。導入元はドイツのExoticaでしたが、そのデータベースでは"Heidelberg74941"に対応するとあります。しかし、残念ながらハイデルベルク植物園にvar. durispinaを示すものはありませんでした。var. durispinaという名前は正式な学名ではなく園芸名です。著者らは過去に知られている種類ではないと感じましたが、由来が不明なため正式な記載を控えました。
ところが最近、Petr Pavelka氏から送られてきたマダガスカルのユーフォルビアの写真を調べたところ、Amboasaryの北にvar. durispinaが分布することが分かりました。また、同じ特徴の標本も発見しています。
著者らはvar. durispinaを独立種と考えています。形態学的に近縁なE. boiteauiの短い4mmの托葉とは異なり、var. durispinaはより長い7mmなどいくつかの特徴が異なります。また、E. spirostichaに似ますが、はるかに短い托葉突起(2mm)があり、しばらくすると消え、葉は非常に小さな結節(1mm)があります。
以上のことから、著者らはvar. durispinaを新種と考え、Euphorbia durispinaとしました。E. durispinaは高さは最大5cmで非常に小さく、匍匐根を持ちます。


⑦用語について
この論文では、かなり特殊な用語が使われています。正直、どう訳したものか悩みました。著者らによると、「podarium」とは、Rauh & Buchlohにより葉柄の周辺領域と定義されました。私は「托葉」と訳しましたが、一般的に定義される托葉とはまったく異なります。「podarium」は著者らが「podarium appendages」(=托葉突起と訳した)と呼ぶ、鱗片のような突起が融合した基部で構成されるそうです。また、E. decaryiグループの中で本来のトゲを発達させたのは、E. tulearensisとE. parvicyathophoraのみだそうです。

⑧キュー王立植物園のデータベース
さて、現在のキュー王立植物園のデータベースでは、E. decaryiグループはどのような分類となっていますでしょうか。論文に出てきた名前を調べてみました。以下に示します。

1, E. boiteaui Leandri
   ①E. boiteaui var. boiteaui
   ②E. boiteaui var. ampanihyensis
      (Cremers) J.-P.Castillon & J.-B.Castillon 
       =E. decaryi var. ampanihyensis Cremers
   ③E. boiteaui var. spirosticha
      (Rauh & Buchloh) 
 
        J.-P.Castillon & J.-B.Castillon
       =E. decaryi var. spirosticha
                 Rauh & Buchloh
2, E. crassicaulis (Rauh) Heav. & Hett.
       =E. francoisii var. crassicaulis Rauh
       =E. decaryi var. crassicaulis (Rauh)
              J.-P.Castillon & J.-B.Castillon
3, E. decaryi Guillaumin
    ①E. decaryi var. decaryi
        =E. francoisii Leandri
        =E. francoisii var. rubrifolia Rauh
    ②E. decaryi var. robinsonii Cremers
4, E. cap-saintemariensis Rauh
       =E. decaryi var. cap-saintemariensis
            (Rauh) Cremers
5, E. suzannae-marnierae Rauh & Petignat
6, E. waringiae Rauh & Gerold


見てお分かりのように、著者らの主張が認められているのは、E. crassicaulisの独立についてのみです。var. ampanihyensis=var. spirosticha、あるいはE. spirostichaの独立は認められておりません。さらに、var. robinsonii=E. susannae-marnieraeや、新種E. durispinaも認められていないようです。しかし、これは「現在は」という保留が付きます。まだ、論文が出たばかりですから、今後の変更は十分あり得るでしょう。
それはそうと、花キリンは非常に混乱した分類群ですが、最近整理され始めました。非常に気になるところです。E. decaryiグループも含め、まだ整理は続くのでしょう。今後も注視していきたいと考えております。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

植物の種子は地面にばらまかれたら直ぐに発芽する訳ではありません。大抵は発芽に適した時期まで休眠します。とはいっても種子の発芽可能な期間は決まっています。条件が発芽に適していない場合でも、種子が何年も耐えられるとは限りません。場合によっては毎年新しい種子が出来るので、種子の寿命はその年のみというこのもあるのでしょう。また、よくあるパターンとして、研究者が種子を良い条件で何年も保存し、種子を撒いたら発芽しましたという場合でも、実際の野生に生える植物では様々な悪条件により速やかに種子が死亡したりします。このギャップを埋めるためには、野外で種子を含む土壌を採取してきて、その土壌中にある種子が発芽するかを確認することが必要となります。かつてKumara plicatilis(=Aloe plicatilis)の種子寿命について調べた論文を記事にしたことがありますが、やはり自然状態の種子ときちんと研究室で管理された種子では発芽可能な期間が異なりました。

Kumara plicatilisの発芽についての記事はこちらをご参照ください。
さて、本日はサボテンの種子に関する論文をご紹介します。それは、Lucía Lindnw-López, Guadalupe Galíndez, Silvia Sühring, Valeria Pastrana-Ignes, Pablo Gorostiague, Angela Gutiérrez & Pablo Ortega-Baesの2018年の論文、『Do cacti soil seed banks? An evalution using species from the Southern Central Andes』です。

まずは、内容に入る前に用語の説明から。土壌中で発芽せずにいる種子を'seed bank'と言います。直訳すると「種子銀行」ですが、今回は貯蔵種子と訳させていただきます。また、論文中で土壌中の貯蔵種子を'soil seed bank'と呼び、これをSSBと略しています。貯蔵種子の区分として、種子の生存が1年以下の一過性の貯蔵種子、1年以上生存し続ける持続性貯蔵種子に分類出来ます。

過去の研究ではサボテンの種子はSSBを形成出来るとされています。しかし、これは種子の形態学的及び生理学的特性から推察された結論であって、実際の野生のサボテンの種子について調べたものではありませんでした。そこで、この論文では野生のサボテンのSSBを調査することとしたのです。

調査はアルゼンチンのサボテンの多様性が高いとされるSalta州の12の地点で実施されました。野生個体から採取された種子を地面に埋めました。土壌の採取は新しい種子が形成される前に行われました。直径10cm、深さ3cmの円筒形の金属製の筒により土壌を採取しました。また、1つの地点で裸地とナース植物の下の2点の採取が実施されました。ナース植物とは乾燥地に生え葉を繁らせ陰を作る植物で、その木陰は遮光され地面の温度を下げます。そのため、ナース植物の下は実生が生き残りやすい環境と考えられています。
残念ながら種子が少なく分析出来ないサボテンもありました。論文で分析できたのは、Echinopsis atacamensis、Echinopsis terscheckii、Echinopsis thionantha、Gymnocalycium saglionis、Gymnocalycium schickendantzii、Gymnocalycium spegazziniiの6種類でした。

さて、これらのサボテンの種子は24ヶ月後に回収した場合、生き延びたものはありませんでした。全体的な傾向としては、生存率は経過時間が長いほど低下しました。6ヶ月後ではE. thionanthaとG. spegazziniiは生存率が低下しましたが、それ以外の4種類の種子はほとんど生存率は低下しませんでした。しかし、1年後では6種類すべてで非常に生存率は低下しましたが、発芽能力がある種子が存在します。

このように、サボテンは短期間ではあるもののSSBがあることが分かりました。しかし、著者らは他の論文の報告から、単純に発芽能力が経年劣化するのではなく、病原性真菌の感染により種子が死亡している可能性も指摘しています。個別の種子を見てみると、G. schickendantziiは採取されて直ぐの種子より、6ヶ月に回収された種子の方が発芽率が良いという意外な結果でした。これは、一度種子が休眠して後熟成している可能性が指摘されます。
この研究では、ナース植物の効果は確認出来ませんでした。E. thionanthaはナース植物の下の種子は発芽率が低下しました。理由は定かではありませんが、経過時間の方がファクターとしては大きいようです。一般的にはナース植物の効果は複数の報告があります。しかし、ナース植物のアレロパシー効果により付近の種子にダメージがあった可能性も指摘されます。アレロパシー効果とは植物が様々な物質を放出して、周囲に影響を与えることを言います。この場合は、ナース植物の将来的な競争相手となる可能性のある他植物の種子が発芽しないように、ナース植物が生長阻害物質を放出しているのかもしれません。ナース植物となる植物も慎重に選ぶ必要性があったのかもしれません。


以上が論文の簡単な要約です。乾燥地の過酷な環境下でも、サボテンの種子は1年間は生存するものもあることが示されました。個人的には、流石に自生地では短期間に発芽出来ないと速やかに死亡するような気がしていました。それが、まさか短期間であろうと貯蔵種子が存在することに驚きました。多肉植物は過酷な環境に生えるものが多いので、貯蔵種子の存在が私の中で俄に面白い存在となりました。興味が出てきましたから、何か良い論文がないか調べてみたいと思います。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

花粉を運ぶのは誰か? 植物のポリネーター(花粉媒介者)については個人的に気になっており、過去にはアロエやアガヴェについて論文を調べて記事にしました。しかし、陸上植物のライフサイクルを考えた時、ポリネーターの働きにより種子が出来るだけでは駄目で、その種子が散布される必要があります。果実を動物に食べてもらい、あちこちで糞をして糞中の種子がばらまかれるタイプのものが多いでしょう。また、オナモミのようにトゲなどにより動物の体に付着して運ばれるものも割とあります。エライオソームという栄養分が着いている種子は、蟻に巣穴に運搬してもらうタイプです。また、Uncarinaは踏みつけ種子で、果実が脚に絡み付いて踏まれる度に種子がこぼれるなんていうタイプもあります。逆に動物を利用しない植物は多くは羽があり風で散布されます。また、ユーフォルビアは種子を弾け飛ばしますが、散布すると言っても対して距離ではありません。
このように、種子の散布は様々な方法があり、植物によって様々な工夫が見受けられます。最近はこの種子の散布が気になるところです。ということで、本日はその一例を調査した論文をご紹介します。それはLaura Yanez-Espinosa, Felipe Barragan-Torres, Alejandra Berenice Ibarra & Jaime Ivan Moralesの2019年の論文、『Dispersal of Dioon edule cycad seeds by rodents in tropical oak forest in Mexico』です。この論文ではメキシコのサンルイスポトシ州の熱帯オーク林でDioon eduleというソテツの種子の行方を追跡しています。

ソテツは中生代に豊富で多様性があり、コーンごと種子を草食恐竜が食べることにより、糞として種子を拡散したと言われています。恐竜は絶滅しましたが、現在のソテツの種子は誰が運んでいるのでしょうか?
まず、実際のソテツの種子は1~3cmと大きいので、重力で落下し親植物の近くに留まります。しかし、雨により分散し、または小川の流れに乗ることもあります。とはいえ、基本的に分散力は低い種子と言えるでしょう。論文では自動撮影により種子を運ぶ動物を観察しました。結果は4種類のネズミが、Dioon eduleの種子を持ち去りました。しかし、ソテツの種子には毒があると言われています。
実際にマウスにDioon eduleの種子を与えると、神経系にダメージがあり7日後に死亡したそうです。しかし、この実験はDioon eduleの種子のみを餌とした場合です。実際に様々なものを食べている場合には、それほど問題にはならないようです。ネズミの巣穴にファイバースコープを入れて、巣穴の内部に貯蔵された種子を観察しましたが、やはり齧られて食用とされていることが分かります。
さて、せっかくの種子が食べられてしまっては意味がないような気もしますが、実際にはあちこちに貯蔵した種子のほとんどは放置される運命のようです。日本でもリスやネズミがドングリをやはりあちこちに貯蔵しますが、そのほとんどは利用されません。巣穴は地上より湿り気があり発芽に適した環境です。しかも、ネズミの糞などで周辺環境は富んでいます。何より、親株から離れた場所に移動できるメリットは計り知れません。

ネズミの種類により種子に対する行動に差があります。小型のネズミより中型のネズミの方が、Dioon eduleの種子を積極的に巣穴に運びます。これは、どういう理由でしょうか? 単純にとらえるならば、小さいネズミは大きい種子を運ぶのが大変だからです。エネルギー効率を考えた場合、大きすぎる種子は運搬にかかるコストが高くなりすぎて非効率的です。自身のサイズに見合ったより小型の種子を運搬する方が良いということになります。逆に中型のネズミにとっては、Dioon eduleの種子を運搬することは大したコストがかからないのでしょう。しかし、論文では他の可能性にも言及しています。それは、種子の毒性についてです。今さら種子の毒性について蒸し返すのかと思われるかもしれませんが、ちゃんと理由があります。小型のネズミにとっては、Dioon eduleの種子は毒性が高すぎるのかもしれません。なぜなら、Dioon eduleの種子を同じ量食べた場合、体重の重い中型のネズミにとっては許容量ですが、体重の軽い小型のネズミにとっては致命的かもしれないからです。小型のネズミにとっては、運ぶのが大変な割にほんの少しずつしか食べられない効率の悪い食べ物です。

以上が論文の簡単な要約と言うより、一部を抜粋したものです。実は論文にはオークのドングリと比較したりとか様々な要素が含まれますが、今回は敢えて省きました。それは、種子が運ばれることのメリット・デメリットと、種子を運ぶ動物のメリット・デメリットについて重視したからです。
ネズミは何もソテツのために種子を運んでいるわけではありませんが、結果的に種子は拡散されます。しかし、そのネズミもサイズによりメリット・デメリットを天秤にかけて、自身のためだけに種子を運ぶのです。自然の中に何とも言えない絶妙なバランスが存在することに、大変驚かされますね。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

昨今、環境問題が声高に叫ばれてはいますが、中々どうして解決策が見つからない難題です。環境破壊や異常気象は植物の生育にも多大な影響を与えます。日本でも夏の暑さは徐々に酷くなり、熱帯のようなスコールがあったり、超大型台風が頻繁に発生したりと異変は続きますが、実際に冷夏・暖冬も含め農作物の被害は相当なものがあります。異常気象を含め気候変動は野生の植物にも様々な影響を与えるはずです。分かりやすい例では、温暖化によって高山植物の分布はかなり変動しているそうです。数十年も継続して調査されている山では、かなりダイナミックに分布や高山植物の種類が変動していることが分かりました。高山はある意味で極端な環境ですから、気候変動の影響を受けやすいように思えます。その極端な環境に適応しているので、高山植物は急激な変動には対応しにくい植物と言えるでしょう。同様に極端な環境に育つ多肉植物にも、気候変動は影響して来るはずです。本日は、そんな多肉植物の1つ、砂漠に生えるパキポディウムと気候変動の関係について考察したDanni Guo, Leslie W. Powrie, Danielle W. Boydの2019年の論文、Climate Change and Biodiversity Threats on Pachypodium Species in South Africa』です。

南アフリカ南部にはPachypodium succulentumとPachypodium bispinosumという2種類のパキポディウムが分布します。この2種類のパキポディウムは分布が重なり、一見して良く似ていますが、遺伝的にも近縁であることがわかっています。
気候変動は南アフリカにおいても重大な問題であり、特に降雨量の変動は元より乾燥地に生える多肉植物にとって深刻な脅威である可能性が高いでしょう。
さて、この研究では過去の南アフリカの気象データから、今後の気候変動をコンピューターでシミュレートし、現在の2種類のパキポディウムの分布をやはりコンピューターでシミュレートしています。


結論として、P. bispinosumは気候変動により大幅に生息地が減少することが分かりました。もともとP. bispinosumは生息域が狭いこともあり、急激に個体数が減少する可能性が高いようです。なぜなら、分布が広ければ環境も様々で中には対応出来る環境があるかもしれませんが、分布が狭いとそうはいかないでしょう。
逆にP. succulentumはそれほど生息地が減少しません。ある生息地は消滅しますが、代わりに現在P. succulentumが生息していない他の地域に分布が移動しています。生息地が広いことが幸いしているようです。
さて、気候変動のうちパキポディウムに影響を与える要因をピックアップすると、降水量の季節性、乾季の降水量、暖かい四半期の降水量が挙げられます。これらは正にも負にも影響します。重要なことは、パキポディウムに影響を与えるのは気温ではなく降水量の変動であるということです。

以上が論文の簡単な要約です。地球温暖化は何も気温が高くなるだけではなく、海水面が暖められて海流に影響したりと、蒸発した湿った空気が影響を及ぼしたりと、様々な影響があります。当然ながら、南アフリカの降水量にも影響が出てくるのでしょう。しかし、今回はパキポディウムに影響を与えうるであろう他の様々な要因については考慮されていません。論文の主張だけでは弱く、まだ絶滅のリスクについて語ることは難しいとしています。ただし、それは人間の環境に与える様々な負の影響も加算されることになりますから、パキポディウムの明るい未来を描くことは大変難しいことのように思われます。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

以前、Aloe parvulaについて調べていた時に、嫌石灰植物という言葉を知りました。嫌石灰植物とはケイ酸植物とも言われるようです。最近、イネ科植物などケイ素要求性が高い植物があるという記事を書いたことがあります。取り込んだケイ素で植物は体を補強しています。逆にトマトはほとんどケイ素を吸収しませんが、どうやらトマトは石灰を吸収して体を補強しているみたいです。そのため、トマトはカルシウム要求性が高く、カルシウムが不足すると尻腐れになるそうです。また、バラやカラタチもトゲにカルシウムを蓄積しているようです。しかし、残念ながら日本ではアルカリ性土壌ではまともに植物を育てるのは難しいようです。それは、どうしてでしょうか?

DSC_2265
Aloe parvula

ここで、森林総合研究所の2011年のレポートを見てみましょう。それは、香山雅純、山中高史、青木菜保子による『石灰質土壌に移植されたカシ2種の外生菌根菌の接種効果』です。九州には石灰岩地が多く石灰を採掘しています。そして、鉱山の採掘跡地は緑化が義務付けられているそうです。しかし、そもそも石灰岩地は自然に樹木が生えにくい土地ですから植樹が難しいのです。なぜなら、多量のカルシウムにより土壌が強いアルカリ性となっており、その影響で鉄やマンガン等の微量元素の吸収が抑制され、リンがカルシウムと結合してしまい植物が利用出来ないのです。そのため、石灰岩地の植生は構成が異なります。樹木では、低い標高の石灰岩地の主要樹種であるアラカシや、標高の高い石灰岩地にみられるウラジロガシが知られています。アラカシやウラジロガシはブナ科の植物ですが、ブナ科の植物は菌類と共生関係を結んでおり植物の根に菌糸がまとわりつく菌根を形成します。石灰岩地では菌類菌が分泌する酸により、カルシウムと結合したリンを溶かして植物が活用出来るようなるそうです。
さて、この研究ではアラカシとウラジロガシのドングリを植えて、菌根を形成する茸であるツチグリとニセショウロを培養したものを接種しました。①茸を接種しないグループ、②ツチグリを接種したグループ、③ニセショウロを接種したグループで、10ヶ月栽培しました。1グループあたり10本の個体数で実験しています。土壌のpHは7.03で弱アルカリ性です。

気になる結果は以下のようになりました。
ウラジロガシ
①接種していないグループでは、葉は0.5倍と減ってしまいました。幹と枝は2.5倍と微増、根は1.0倍と変化無しでした。
②ニセショウロを接種したグループでは、葉は1.1倍、幹と枝は2.1倍、根は1.8倍とすべて微増しました。
③ツチグリを接種したグループでは、葉は5.1倍、幹と枝は9,9倍、根は6.4倍とすべて著しく生長しました。

アラカシ
①接種していないグループでは、葉は0.7倍と減ってしまいました。幹と枝は1.4倍、根は1.2倍と共に微増しました。
②ニセショウロを接種したグループでは、葉は3.0倍、幹と枝は3.6倍、根は2.5倍とすべてで増加しました。
③ツチグリを接種したグループでは、葉は7.6倍、幹と枝は9.8倍、根は6.6倍とすべて著しく生長しました。

というように、アラカシもウラジロガシも、菌根菌の接種により生長が促進されました。ここから2つのことが読み取れます。1つは、石灰岩地に生える=アルカリ性土壌に強いと思われるアラカシやウラジロガシが、菌根菌がいないとまともに生長出来ないということです。というよりも、菌根菌と共生しているから石灰岩地で育つことが出来ていたのでしょう。2つ目は、ニセショウロよりツチグリの方が効果的であったことです。これは、ニセショウロがアルカリ性土壌に弱いので、ニセショウロ自体が上手く育たないのでしょう。もしかしたら、嫌石灰植物は共生する菌類がアルカリ性に弱いということもあり得るのかもしれません。
しかし、植物と菌類との共生関係は思った以上に重要であることがわかります。サボテンも菌類との共生が有効であるという論文を昨日記事にしました。他の様々な多肉植物も知られていないだけで、地下では菌類と共生関係を結んでいるのかもしれませんね。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

多くの野生の植物は菌類と共生関係を結んでいます。積もる落ち葉を剥がすと、茸の菌糸が一面に張りめぐらされています。森の木々は地下世界に広がる菌糸により、繋がっていたりします。これを菌根と呼んでいます。菌根は不思議なもので、植物の根が菌糸の服を着ているようなもので、植物と菌類はお互いに養分をやり取りしています。この菌根は思われていたより重要であることが近年わかりつつあり、様々な研究が活発になされているようです。さて、そんな菌根ですが、サボテンに対する影響を調べた研究がありましたのでご紹介します。Domenico Prisaの2020年の論文、『Gigaspora Margarita use to improve flower life in Notocactus and  Gymnocalycium plants and roots protection against Fusarium sp.』です。

この研究ではGigaspora margaritaという菌類をサボテンと共生させて、サボテンの生育とサボテンの病原菌に対する影響力を見ています。まずは、実験に使用したサボテンは、Gymnocalycium baldianum、Gymnocalycium mihanovichii、Notocactus eugeniae、Notocactus leninghausiiです。共生菌のGigaspora margaritaはグロムス門に分類されます。グロムス門は植物の8割と共生可能なグループで、アーバスキュラー菌根を形成します。アーバスキュラー菌根は、植物の根の組織内に菌糸が侵入して深く結びついており、主にリン酸を集めて植物に与えています。

栽培10ヶ月後、Gigaspora margaritaのあるグループとないグループで比較したところ、Gigaspora margaritaのあるグループでは、4種類のサボテンは高さと円周、地上部と根の重量、花と果実の数、花の寿命がすべて高い値でした。これは面白い結果です。根の重量があるということは根の張りが良いということです。当然、サボテンの生長にプラスでしょう。さらに、花数については、サイズが大きく栄養状態が良ければ、花数も増えるのは道理です。しかも、花の寿命が伸びていますから、花数の多さも加算されて、結果として果実も増えています。花の寿命が長いと、それだけ受粉のチャンスが増えますからね。

次に病原菌に対する反応です。この研究では、フザリウム(Fusarium)という植物感染性のカビを接種しています。フザリウムには沢山の種類がありますが、植物寄生性のカビが複数含まれます。フザリウムは実はまとまりのあるグループではありません。菌類には完全世代と不完全世代があり、この2つの世代を繰り返しています。完全世代とは有性生殖により胞子を作る世代で、不完全世代とは分裂や出芽など無性生殖する世代のことです。このうち、不完全世代しか知られていない菌類を不完全菌と呼んでいました。不完全菌は特徴で分類することが難しく、わからないものは取り敢えず不完全菌とされてしまっていたのです。というのも、完全世代と不完全世代では姿が全く異なることが多く、しかも違う植物に寄生します。それぞれの世代がすでに発見されていても、それが同じ種類であるとはわからなかったりします。とまあ、話が脱線しましたが、Gigaspora margaritaの有無で違いはあるのでしょうか?
結果は、Gigaspora margaritaがあることにより、サボテンの死亡率の大幅な低下が見られました。G. baldianumでは死亡率3.61%が0.78%、G. mihanovichiiでは死亡率2.84%が0.21%、N. eugeniaeは死亡率2.46%が0.21%、N. leninghausiiは死亡率0.84%が0.21%になりました。つまり、アーバスキュラー菌根の存在により、有害なフザリウムの被害を減らすことが出来たのです。
植物に感染するカビは特に農作物で良く調べられており、アーバスキュラー菌根菌の存在によりFusariumだけではなく、Aphanomyces、Cylindrocladium、Macrophomina、Phytophthora、Pythium、Rhizoctonia、Sclerotinium、Verticillium、Glomusといった病原菌に対しても防御する効果があることがわかっています。アーバスキュラー菌根菌はフザリウムだけではなく、様々な病原菌に対してもサボテンを守ってくれる可能性があると言えるのではないでしょうか。今後、研究が進展した暁には、サボテン用のアーバスキュラー菌が販売される未来がやって来るかもしれませんね。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

最近、1937年にドイツで出版された『Kakteenkunde』を入手し、その中のPaul Stephan氏のユーフォルビア・コレクションをご紹介しました。せっかく珍しい古い文献ですから、他にも何か面白い記事はないか索引を眺めていたところ、私の興味ある多肉植物であるガステリアについての記事がありました。

さて、本日は『Kakteenkunde』のガステリアに関する2つの記事をご紹介します。記事の執筆者はドイツの植物学者であるKarl Joseph Leopold Arndt von Poellnitzです。多肉植物を広く研究しましたが、特にHaworthiaの分類で著名です。Poellnitzia rubrifloraに献名されていることからご存知の方もおられるでしょう。
先ずは11月号の「Zwei neue Gasteria-Arten」から見ていきましょう。どうも、2種類のガステリアの新種を発表しているみたいです。植物の特徴は何とラテン語で記載されていました。全く読めませんから、機械翻訳の不細工な怪文書を解読してみました。

・Gasteria caespitosa von Poellnitz spec.nov.
根元から非常に多く増殖します。葉は完全に円柱状で、直立し長さ10~14cm、基部の幅は2cmです。両端には結節状の鋸歯があります。葉には光沢があり斑点があります。この先はさらなる詳細と花の特徴が続いているようですが、残念ながらかなり翻訳文が怪しいのでここまでとしましょう。
ここから先はドイツ語の翻訳です。どうやら、van der Bijl夫人が1929年にケープランドのSomerset Eastで採取したものを、von Poellnitzに贈ったものということです。von Poellnitzはこのガステリアを、育ったらGasteria maculata (Thunb.) Haw.、あるいはその類似種となると考えていたようです。しかし、その予想は外れて、葉のサイズは変わらずに良く花を咲かせているということです。von Poellnitzはこのガステリアを、Gasteria subnigricans Haw.やGasteria fasciata (Salm) Haw.と関係するが、それらと区別されるため新種と考えているようです。

_20230219_231739
Gasteria caespitosa von Poellnitz spec. nov.
さて、ではこの種は現在どうなっているでしょうか?
取り敢えず、G. caespitosaから見てみましょう。
Gasteria caespitosa Poelln., First published in Kakteenkunde 1937 : 165

ちゃんと『Kakteenkunde』の165ページに載ってると書かれていますね。いや、当たり前の話ですが、何となく嬉しく思います。しかし、残念ながらこのG. caespitosaは現在認められている学名ではありません。現在はGasteria obliquaの異名扱いです。また、von PoellnitzがG. maculataと似ていると思った直感は正しく、Gasteria maculata Haw.も現在ではGasteria obliquaの異名ですから、同じ種を示していた訳です。ちなみに、G. subnigricansはGasteria brachyphylla var. brachyphylla、G. fasciataは何とまたもやGasteria obliquaの異名となっています。

・Gasteria Bijliae von Poellnitz spec.nov.
無茎またはほぼ無茎で、非常に早く生長し増殖します。若い苗は尖った2列の葉を持ち、成熟すると葉は渦巻き状の密なロゼットとなり、直径12~14cmです。横向きの縞模様があります。
やはり、このガステリアもvan der Bijl夫人によるもので、種小名は夫人に対する献名です。種小名が大文字なので単純に誤植かと思いましたが、写真の方の学名も同様なのであえてそうしているような気もしました。献名なのでとか何か理由があるのか、本当にただの誤植がは分かりません。von Poellnitzが7年育てましたが、未だに花は咲いていないということです。von Poellnitzもまだ生長しきっていないため、確実に新種とも言い切れないようで、やや歯切れの悪い言い方をしています。

_20230219_231712
Gasteria Bijliae von Poellnitz spec.nov.
G. bijliaeは、現在ではGasteria carinata var. carinataの異名となっています。

では続けて10月号のvon Poellnitzによる「Gasteria humilis v.P.」を見てみましょう。G. humilisは1929年にvan der Bijl夫人がケープランドのGreat Brak川付近で採取した植物で、同年にvon Poellnitzにより新種として記載されました。密に螺旋状となり直径12~14cmとなります。8~12枚の葉は若い時は直立し古い葉はやや広がります。葉は三角形で先端はごく僅かに内側に曲がり、鈍く尖ります。葉は滑らかで光沢があり、濃い緑色で斑点があります。
G. humilisは確かにG. decipiens Haw.やG. parvifolia Bak.、G. gracilis Bak.、G. Beckeri 
Schönlandに関連しています。しかし、これらとは異なり葉の縁がトリミングされます。また、G. obtuse (Salm) Haw.はキールが上部で曲がり葉縁を形成しますが、G. humilisでは目立ちません。
_20230219_231642
Gasteria humilis v.P
名前が出てきた中では、G. humilisとG. parvifoliaはGasteria carinata var. carinataの異名、G. decipiensとG. BeckeriはGasteria nitida var. nitidaの異名です。G. gracilisは何に相当するのかが不明な種です。


以上が論文の簡単な要約です。1937年にvon Poellnitzにより命名された2種類のガステリアは、残念ながら現在は認められておりません。過去に命名したG. humilisもG. carinata var. carinataの異名になってしまいました。学名は一度決まったら不変なものではなく、結構ダイナミックに変更され続けるものですから、昔の学名と異なるのは差程珍しいことではありません。しかし、ガステリア属はかなり特殊で、「分類学者の悪夢」と呼ばれるくらい異名だらけでした。個体差や地域変異がすべて別種として命名されてきたのでしょう。まあ、そもそもが外見的に区別するのが難しいグループなのかもしれません。たしか、1990年代くらいからvan Jaarsveldにより、ガステリア属は大幅に整理されました。現在、ガステリア属は26種類に集約されました。とは言うものの、そのうち9種類は2000年以降に発見されていますから、種類が少ないのに新種が次々と発見されているホットなグループでもあります。また、現在では遺伝子解析によりある程度は近縁関係が分かってきましたから、細かい修正は続くかもしれません。

さて、個人的にはこのような昔の記事が面白いので、是非とも記事にしたいのですが、中々古いものは入手が難しいものです。記事の内容を一応紹介していますが、どちらかと言うと1937年当時の画像を見ていただきたいだけだったりします。しかし、サボテンについての(恐らくは)貴重な記事もあるようですが、残念ながらサボテンはギムノカリキウム属以外はよく分かりません。私では何もコメント出来ませんから記事化は断念しました。もう少し色々な多肉植物に詳しければ良いのですが、こういうものは一朝一夕には身に付かないものです。少しずつ勉強していくつもりです。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

fan aloe(扇アロエ)と呼ばれる多肉植物があります。蒼白い上向きの葉が左右に分かれて綺麗に並ぶことから、そのように呼ばれているのでしょう。以前は珍しい多肉植物でしたが、最近では実生苗が出回っています。一般的にはAloe plicatilisという名前で販売されています。しかし、2013年にGordon D.Rowleyによりアロエ属からクマラ属に移されました。つまりは、Kumara plicatilisです。しかし、この過程にも何やらややこしい事情が見え隠れしているようです。非常に面倒臭い話ですからご注意のほどを。書いている私もうんざりする内容です。

DSC_2218
Kumara plicatilis

事の発端は1753年まで遡ります。現在の学名の仕組みを作り出したCarl von Linneが、fan aloeを命名しました。この最初の学名は、Aloe disticha var. plicatilis L.でした。Aloe distichaとは現在のGasteria distichaのことです。というのも、von Linneの時代はまだガステリア属はなく、当時のアロエ属には現在のガステリアやハウォルチアを含んでいたのです。ですから、Gasteria distichaも最初はアロエ属でした。そして、fan aloeは、何故かAloe disticha=Gasteria distichaの変種とされたのです。
1768年にfan aloeは独立し、Aloe plicatilis (L.) Burm.f.とされました。しかし、1786年にKumara disticha Medik.という学名も提案されました。問題はここまでの経緯と、この先のクマラ属に移行する際の混乱です。この混乱についての論文は、Ronell R.Klopper, Gideon F.Smith & Abraham E. van Wykの2013年6月の論文『(2144) Proposal to conserve the name Kumara (Asphodelaceae) with a conserved type』、及び7月でた同著者らの論文である『The correct name of Aloe plicatilis in Kumara (Xanthorrhoeaceae : Asphodeloideae)』に書かれています。

1786年にMedikusはKumara Medik.を創設し、Kumara disticha Medik.という1種類を命名しました。その時の図を見ると、Kumara distichaがfan aloeを指していることが分かります。また、1784年に命名されたAloe tripetata Medik.という異名は、Commelijnの1701年の銅版画に基づくものです。Commelijnの銅版画は明らかにfan aloeを描いています。これは、本来はAloe disticha var. plicatilis L.である必要があります。また、この時にMedikusは、Aloe disticha var. δ(※1)についても言及していますが、これは誤りでGasteria carinata (Mill.) Duval=Gasteria excavata (Willd.) Haw.を示しているようです。MedikusはAloe linguiformis Medik.をAloe disticha var. αに基づいており、Aloe verrucosa(※2)をAloe disticha var. γに基づき命名し、後の1786年にはAloe tristichaをAloe disticha var. βに基づいていました。

(※1)Aloe disticha L.は、現在のGasteria disticha (L.) Haw.を指しているとされていますが、Aloe distichaは他の種類のガステリアを含んだものだったようです。ですから、この場合は異なる種の混合であるAloe distichaを参照としており、仮にAloe distichaの変種δと表現しています。この後に出てくる変種αや変種βも同様です。

(※2)これは1768年に命名されたAloe verrucosa Mill.を示すため誤りで、正しくは1784年に命名されたAloe verrucula Medik.のことを指す。A. verruculaとは現在のGasteria carinata var. verrucosaのこと。

実際にはfan aloeはKumara distichaとは呼ばれずAloe plicatilisの名前が使用されてきました。しかし、遺伝子解析の結果からは、fan aloeがアロエではなくハウォルチアに近縁な仲間であることが分かりました。そうなると、fan aloeをアロエから独立させる時に、忘れ去られていたKumara distichaが浮かび上がって来るのです。
ここで問題が生じます。Kumara distichaは1786年の命名であり、Gasteria Duvalは1809年の命名ですから、もしAloe distichaがKumara plicatilisやGasteria carinataなどの様々な種を含んでいた場合、Aloe distichaはKumaraのバシオニム(基になった名前)となります。つまり、Aloe distichaを現在のGasteria distichaとした場合、GasteriaよりもKumaraの方が命名が早いので、現在のGasteriaは全種類Kumaraにしなければなりません。GasteriaはKumaraの異名となります。当然、Kumara plicatilisはKumara属を旧・Gasteriaに取られてしまったので、新たな命名が必要となります。これは、命名規約を厳密に適応するならば避けられない事態ですが、適応された場合の混乱は必至でしょう。
しかし、著者はKumara plicatilisを保存して、Gasteriaを現在のままにしておくことを提案しています。なぜなら、Gasteriaは200年以上に渡り使用されてきた学名であり、命名法の深刻な混乱を引き起こすからです。そして、Aloe plicatilis (L.) Burm.f.の新たな命名としてKumara plicatilis (L.) Klopper & Gideon F.Sm.を提唱しています。
 
以上が論文の内容となります。内容が込み入っているため、適切に要約出来ているか怪しい部分もあります。しかし、話はこれで終わりではありません。まだ続くのです。やはり、同著者らの2013年8月の論文、『The correct name of Aloe plicatilis, the fan aloe, in the genus Kumara (Asphodelaceae), again』を見てみましょう。
Kumara Medik.がfan aloeであるAloe plicatilis (L.) Burm.f.のために復活した時に、7月の論文で著者らはKumara plicatilisに修正しました。この時に著者らはKumara plicatilis (L.) Klopper & Gideon F.Sm.と命名しました。しかし、2013年の4月にGordon D.Rowleyが『Alsterworthia』のSpecial Issueで、すでにKumara plicatilis (L.) G.D.Rowleyと命名していました。よって、著者らが命名したKumara plicatilis (L.) Klopper & Gideon F.Smは不適切な名前であり、G.D.Rowleyの命名が優先されます。
また、Aloe plicatilisの引用元は1768年の3/1~4/6の出版物で命名されたAloe plicatilis (L.) Burm.f.であり、同年の4/16に命名されたAloe plicatilis (L.) Mill.は採用されません。

以上が論文の簡単な要約です。しかし、Kumara plicatilisのややこしすぎる経緯は、何ともすっきりしない感じがあります。この問題は結局のところ、Aloe distichaの曖昧さと、Aloe distichaに対するMedikusの引用の不確かさが招いた混乱と言えるでしょう。また、Aloe plicatilisやKumara plicatilisの命名にも混乱があり、どちらも同じ年に同じ名前が命名されていますが、タッチの差で採用される名前が決まってしまいます。学術世界も競争の世界なんですね。
この異名の処理については文献学的な資料探索と、実際の多肉植物の学術的な知識が必要ですから、それほど進んでいないのかもしれません。私のブログでもこの手の記事を幾つか書きましたが、まだまだこれからも出てくるのでしょう。見つけましたら、また記事にしたいと思います。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

私の好きな多肉植物の産地は、大抵は南アフリカ、マダガスカル、メキシコあたりです。まあ、この辺りは多肉植物の宝庫ですから、実際に種類も豊富です。さて、私もそれなりに多肉植物が増えてきましたが、カナリア諸島やモロッコなど、多肉植物の産地としては少々変わった地域のものもちらほら入手しています。そんなおり、タンザニア原産のユーフォルビアを入手したので色々調べていたら、タンザニアのユーフォルビアについての記事を見つけました。それは、2008年のSusan Carterによる『Euphorbia in Tanzania』です。また、記事ではMonadeniumをEuphorbiaに含める考え方もあると注記がありましたが、現在ではMonadeniumは完全にEuphorbiaとされています。ですから、Monadeniumの学名の後にEuphorbiaとしての学名を追記しました。

タンザニアはケニアと比較すると、ユーフォルビアの多様化は低く、種類も少なくなっています。しかし、人口密度が高い沿岸地域から離れた中央高原は広大で、茂みに覆われツェツェバエ(アフリカ睡眠病を媒介する蝿)が蔓延していることからあまり探索されていません。

北部の草原地帯のSerengetiは、ケニアのMaasai Mara国立保護区よりはるかに広大です。ここでは、巨大な塊根を持つEuphorbia graciliramea PaxとEuphorbia similiramea S.Carter、さらに叢生するEuphorbia uhligiana Paxが見られます。この場所とNgorongoroの火山盆地の間には、2種類の局所的な分布のユーフォルビアが見られます。1つはEyassi湖のほとりのEuphorbia eyassiana P.R.O.Bally & S.Carterで、高さ80cmほどの多肉質の茎は紫がかります。もう1つはManyara湖のRift Valleyの断崖の斜面に見られるEuphorbia elegantissima P.R.O.Bally & S.Carterです。細長い多肉質の茎がブッシュ状となり3mほどになります。

ケニアとの国境沿いを南東に行きキリマンジャロを通り過ぎた北東のParesとUsambarasを横切る丘に到着します。海岸に近いのでよく調査されており、有名なユーフォルビアが生えます。北端にはEuphorbia robecchii Paxが生えます。苗のうちはトゲのある柱サボテン状ですが、大型になると幹は木質化し一見して樹木のように見えます。丘の麓には深い砂質土壌の開けた茂みがあり、Euphorbia heterochroma Paxが生えます。四角柱の柱サボテン状のユーフォルビアで、特徴的な規則的な緑色の斑紋があります。19世紀後半にドイツの博物学者により東アフリカ沿岸部が調査された時に発見された最初の種の一つです。Usambarasの急斜面のさらに南には、高さ15mになるEuphorbia quadrialata Paxが生えます。
DSC_1459
Euphorbia robecchii Paxの苗。Euphorbia robechchiiの名前で流通しているようです。

DSC_1820
大型のEuphorbia robecchiiは樹木状となります。
(P.R.O.Bally, 1954)

ケニアへ広がるこの沿岸地域には、樹木状で沢山の稜があるEuphorbia bussei Paxが見られます。また、3稜のEuphorbia nyikae Paxは、海からの湿気を利用しています。海岸から離れると、1本の幹から無数の枝を密につける有名なEuphorbia candelabrum Kotschyが見られます。

Great Ruaha川を内陸に辿ると、急な断崖のある渓谷に到着します。険しい断崖は植物を保護し、多くのユーフォルビアが生える理想的な生息地です。バオバブの木とともに、Euphorbia quadrangularis Paxは正方形の頑丈でまばらに枝分かれした茎を持ち、その高さは最大3.5mとなります。枝は主茎から直角に広がり、灰色がかった緑色の斑入りです。これはEuphorbia cooperi var. ussanguensis (N.E.Br.) L.C.Leachの分布の北東の限界でもあります。高さ10mとなります。さらに、断崖に沿って行くと、固有種のEuphorbia greenwayi P.R.O.Bally &S.Carterが生えます。高さは30cmで暗赤色のトゲと青みがかる斑入りの茎が特徴です。
さらに、6種類以上の非常に異なったモナデニウムが生え、そのうち4種類はこの地域から固有です。急斜面の丘の中腹には高さ3.5mになる樹木、Monadenium elegans S.Carter=Euphorbia biselegans Bruynsが生えます。美しい紫がかる褐色のフレーク状の樹皮を持ち、明るい色の葉を持ちます。高さ4mになり、まばらに枝分かれした低木であるMonadenium arborescens P.R.O.Bally=Euphorbia neoarborescens Bruynsは、太い多肉質の緑色の茎と25cmになる大型で多肉質の葉をつけます。この種は、関連するMonadenium spectabile S.Carter=Euphorbia spectabilis (S.Carter) Bruynsと同様に谷底に生え、高さ3mで多肉質の大きなは木質葉があります。この地域の4つ目の固有種はMonadenium magnificum E.A.Bruce=Euphorbia magnifica (E.A.Bruce) Bruynsです。丘の麓のブッシュランドのさらに北で見つかりました。高さ1.5mほどの低木で、15cmの多肉質の葉を出します。

_20230208_194941
Euphorbia greenwayi P.R.O.Bally

DSC_1896
Monadenium magnificum E.A.Bruce
=Euphorbia magnifica (E.A.Bruce) Bruyns


DSC_1895
茎や葉の裏に沢山のトゲをつけます。

他の地域にも分布するモナデニウムは2種類で、丘の間の低木地帯で見られます。Monadenium goetzei Pax=Euphorbia neogoetzei Bruynsは3種類の固有種と関連しています。草本性の多年草で、茂みの中から75cmまで育ちます。長さ17cmの多肉質の葉を持ちます。また、下草の中にはMonadenium schubei (Pax) N.E.Br.=Euphorbia schubei Paxがマット状に育ちます。時に高さ1m近く育ちます。

開けた茂みを南西に進むと、Euphorbia quadrangularisが豊富です。しかし、しばしば家畜が放牧されており、環境は渓谷とは異なります。緑がかる褐色の茎と1cmを超えるトゲを持つEuphorbia reclinata P.R.O.Bally & S.Carterが自生します。マラウイとザンビアに隣接する山の麓には、塊根を持つEuphorbia tetracanthoides Paxが見られます。

タンガニーカ湖の東岸に沿う低い丘を北に向かうと、Euphorbia grantii Oliv.が見られます。小さく枝分かれした樹木で多肉植物ではありません。葉は長さ30cmにもなります。関連する種としては、高さ3mの低木であるEuphorbia goetzei Paxがあります。ザンビアとマラウイにも分布します。多肉植物ではありません。同じく、関連するEuphorbia matabelensis Paxは鋭く尖った枝を持つ低木で、多肉植物ではありません。分布は南アフリカまで広がっています。
この丘には多肉質のユーフォルビアもあり、Euphorbia angustiflora Paxなどトゲのある種が知られています。マット状に育つこともあります。また、Euphorbia rubrispinosa S.Carterは明るい緑色で、4稜の茎と暗赤色のトゲを持ちます。


以上が記事の要約です。
タンザニアの多肉植物はあまり聞きませんが、非常に魅力的なユーフォルビアが沢山自生していることが分かります。しかし、それだけではなく、タンザニアの西部にはまだ未調査な部分があると言いますから、まだ知られていない未知のユーフォルビアが存在するかもしれません。今後に期待しましょう。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

本日は2022年のColin C.Walkerの記事、『Euphorbia evolution and taxonomy』をご紹介します。タイトルは「ユーフォルビアの進化と分類学」ですが、内容的には2021年に発表されたユーフォルビアに関する論文の紹介記事です。記事は3つのパートからなっています。早速、記事を見てみましょう。

①ユーフォルビアの分類
遺伝子解析の発達は、長い歴史を誇る植物分類学を一新してしまいました。特にここ10年と少しで急速に普及・発展し、その精度も高くなっています。全世界の植物学者が協力して植物の分類を決定しようとしたAPGというプロジェクトがあり、分類体系は様変わりしました。遺伝子解析によりユーフォルビアの分類も大きな影響を受けることになりました。

さて、ユーフォルビアは種類も多く姿も多様ですが、近年の遺伝子解析においてまとまりのあるグループであることが明らかとなっています。今までユーフォルビアから分離されてきたグループも、ユーフォルビアに合併される傾向があります。
2021年の論文、『Plastome evolution in the hyperdiverse genus Euphorbia (Euphorbiaceae) using phylogenomic and comparative analysis : large - scale expansion and contraction of the inverted repeat region』では、ユーフォルビア属は単系統です。Chamaesyce、Cubanthus、Eleophorbia、Endadenium、Monadenium、Pedilanthus、Poinsettia、Synadeniumは、ユーフォルビア属内で他のユーフォルビアと入れ子状となっていることが示されています。ユーフォルビア属の4つの亜属である、Athymalus、Chamaesyce、Esula、Euphorbiaは単系統でした。

次にやはり2021年の論文、『Euphorbia mbuinzauensis, a new succulent species in Kenya from the Synadenium group in Euphorbia sect. Monadenium (Euphorbiaceae) 』では、わずか14種類のグループであるシナデニウム属に焦点を当てています。シナデニウムは以前は熱帯アフリカの東部と南部のみに分布する、高さ18mまでの樹木です。既知の植物と一致しない種が発見されたので、分子生物学的研究が行われました。この新種はEuphorbia mbuinzauensisと命名されました。ケニア原産の高さ4mほどの低木です。この研究によりシナデニウム属がユーフォルビア亜属の構成員であることを確認しました。

②マダガスカル・ユーフォルビアの学名の改定
2番目はマダガスカルのユーフォルビアについての論文です。2021年の2本の論文、『Novelties in Malagasy Euphorbia (Euphorbiaceae)』と『Taxonomic change and new species in Malagasy Euphorbia』です。

マダガスカルには200以上のユーフォルビアがあり、多様性があります。この2つの論文ではその分類法と命名法を再評価しています。マダガスカルのユーフォルビア48種類を評価しており、これらの論文の種名の変更を基に、将来的に学名が大きく改定される可能性があります。

1つ目の論文の焦点は、花キリンEuphorbia miliiの分類方法の再検討です。E. miliiの由来は1826年の命名以来謎のままであり、この名前は園芸業界で様々な品種に対して総称として使用されています。Euphorbia milii Des Moul.の名前は、先端を切ったような葉の種類に限定されます。楕円形の葉を持つ、赤色や黄色の花(苞)を持つ良く栽培される種類をEuphorbia splendens Bojer ex Hookerの名前で復元されています。
他のE. milii複合体については以外の通りに改定されております。
E. milii var. longifolia→E. betrokana
E. splendens var. bevilaniensis→E. bevilaniensis
E. splendens var. hislopii→E. hislopii
E. milii var. imperatae→E. imperatae
E. milii var. bosseri→E. neobosseri
E. milii var. roseana→E. roseana
E. splendens var. tananarivae→E.tananarivae
E. milii var. tenuispina→E. tenuispina


_20230212_235239
Euphorbia imperatae cv. 

また、Euphorbia bosseri Leandriの分類方法も改定され、一般的なE. platycladaは異名となります。E. platyclada var. hardyiはEuphorbia hardyiとして変種から独立種に昇格しました。

他にも、いくつかの低木種の分類も改定されました。
E. primulifolia var. begardii→E. begardii
E. francoisii var. crassicaulis→E. crassicaulis
E. perrieri var. elongata→E. paulianii
E. berevoensis(E. nicaiseiを含む)
E. delphinensis
E. fanjahiraensis(E. isalensisを含む)
E. guillemetii(E. beharensisを含む)
E. leandriana(E. horombensisを含む)
E. mangokyensis(E. razafindratsiraeを含む)
E. pachyspina
E. perrieri
E. psammiticolia
E. werneri


_20230213_000040
Euphorbia begardii

_20230213_231037
Euphorbia mangokyensis

2番目の論文では、14種類ものマダガスカルの新種ユーフォルビアが記載され、近縁な種類と比較しています。その14種は、E. agatheae、E. atimovatae、E. fuscoclada、E. graciliramulosa、E. kalambatitrensis、E. linguiformis、E. mahaboana、E. makayensis、E. multibrachiata、E. parvimedusae、E. perrierioides、E. rigidispina、E. spannringii、E. tsihombensisです。
また、非公式なE. rubrostriataグループの新しい組み合わせが提案されています。E. itampolensis(E. neobosseri var. itampolensis)、再評価されているのはE. mahafalensis、E. rubrostriata(E. mainianaを含む)、E. xanthadenia(E. croizatii、E. ebeloensis、E. emiliennaeを含む)です。
さらに、新しい異名と新しい組み合わせが提案されています。
E. moratii var. antsingiensis→E. antsingiensis
E. enterophora subsp. crassa→E. crassa
E. rangovalensis(E. castilloniを含む)
E. enterophora→E. xylophylloides

③Euphorbia susannaeの調査
3つ目は、日本ではすっかり普及種となったEuphorbia susannaeについてです。その論文は2021年の『Population biology and ecology of the endangered Euphorbia susannae Marloth, an endemic to the Little Karoo, South Africa』です。著者らはE. susannaeの分布と環境を調査し、野生のE. susannaeの個体数が非常に少数であることを報告しています。
実はこの論文は既に記事にしています。詳細は以下のリンクをどうぞ。


最後に
以上が最新のユーフォルビアのニュースとなります。ユーフォルビアは種類が多い割に論文が少なく、園芸的に人気があるアフリカの多肉質なユーフォルビアとなると、残念ながらほとんどない状態です。しかし、ユーフォルビア属自体は大変動の最中で、モナデニウム属などがユーフォルビア属に吸収合併されました。ユーフォルビア属内の大まかな分類も概ね解決しており、後は詳細な種の所属を明らかにすることや、種同士の関係性が気になるところです。次にマダガスカルのユーフォルビアについてですが、これは非常に大きな改定です。これからの分類が刷新される可能性もあり、重要な論文かもしれません。時間があれば一度読んでみたいと思っています。最後にEuphorbia susannaeについてですが、これは思いの外重要な論文です。多肉植物は、環境破壊や違法採取などにより、個体数を減らしたり絶滅が危惧されているものも沢山あります。しかし、希少植物を保護するにせよ現地調査は欠かせません。まずは知るところからがスタート地点です。しかし、残念ながらアフリカのユーフォルビアは、減少している可能性があるといった曖昧な情報が多く調査もなされていないため、仮に絶滅していてもそのことすら感知されない可能性があります。大変悲しいことです。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

1937年にドイツで出版された『Kakteenkunde』を見つけたのですが、残念ながらドイツ語はまったく分かりません。しかし、索引を眺めていたら、なんとユーフォルビアについて書かれた記事があるみたいです。これは内容が非常に気になります。仕方なく機械翻訳にかけてみました。若干、怪しい翻訳文ですが、86年前に書かれた実に興味深い記事です。
_20230210_230230
記事のタイトルはVon Paul Stephanの『Einige wenig bekannte Euphorbia』、つまりはポール・ステファンによる「幾つかのあまり知られていないユーフォルビア」です。おそらく、Paul Stephanはハンブルク植物園で多肉植物のコレクションの管理をした植物コレクターのことでしょう。Paul Stephanは1929年にConophytum stephaniiの種小名に献名されていますね。この記事ではポール・ステファン氏が自慢のユーフォルビア・コレクションを写真付きで紹介しています。

Euphorbia stellata Willd.
ポール・ステファン氏の解説 : 太くて短い円筒形の幹の上から多数の枝が出ます。幹の樹皮は灰褐色で棘はありません。枝は暗い緑色で褐色の棘があります。枝は上部が凹み、幅は最大2cmで一対の棘で強化されています。棘は赤褐色で長さは2~3mmです。Euph. stellataは「Berger」ではEuph. uncinata DCとされていますが、これは古い名前で有効な名前であるstellataと呼ぶ必要があります。古くから知られていますが、コレクションには滅多に見られません。
_20230210_230349
ポール・ステファン氏のコレクションの写真。何故か写真の学名は、Eu. uncinnataとなっていました。本来はstellataです。しかも、uncinataをuncinnataと誤植されています。枝が短いせいか、あまりE. stellataらしく見えませんね。むしろ、Euphorbia tortiramaに見えてしまいます。水を少なく遮光しないで育てているのかもしれません。

DSC_1924
E. stellataは日本では飛竜の名前で知られています。E. stellata Willd.は1799年の命名、E. uncinata DC.は1805年の命名です。数年前は日本でも割と珍しいユーフォルビアで、思いの外高額でした。現在は苗が出回っており、だいぶお値段も落ち着きました。

IMG_20211219_171619
Euphorbia tortirama

Euphorbia inermis Mill.
ポール・ステファン氏の解説 : Euph. inermis Mill.はEuph. caput-medusae L.の近縁種ですが、はるかに強力な側枝が異なる点です。caput-medusaeにある若い芽は失われています。枝の肋とこぶははるかに顕著です。幹は緑色で下部に向かうほど灰色になります。
_20230210_230431
ポール・ステファン氏のコレクション。下の私の所有している個体と良く似ています。

DSC_0471
E. inermisは日本では九頭竜と呼ばれています。E. inermisは1768年の命名です。日本では量産されており、入手しやすいタコものユーフォルビアです。あまり強光を好まないみたいです。

Euphorbia valida N.E.Br.
ポール・ステファン氏の解説 : Euph. meloformisに最も近縁ですが色が異なります。花の残骸が残っていないため無防備です。それ以外はほぼ同じ植物で、Marlothによるとmeloformisの生長形態が異なるだけに過ぎないと言います。
_20230210_230510
ポール・ステファン氏のコレクション。花柄は残っていません。かなり大型の個体のようです。

_20230212_145322
Euphorbia validaとされる個体。花柄はあまり出ません。縞模様がよく目立ちます。現在、E. valida N.E.Br.、あるいはE. meloformis subsp. valida (N.E.Br.) G.D.Rowleyは、E. meloformis Aitonと同種とされています。原産地では、E. meloformisともE. validaともつかない中間個体が多いようです。要するに、多様な個体の中で特徴的なものをピックアップして命名されただけかもしれないのです。

_20230212_145445
縞模様がほとんどない個体。花柄は長く伸びます。validaとは、ラテン語で「validus=強い」から来ています。

_20230212_145518
Euphorbia infausta N.E.Br.は、現在はE. meloformisと同一種とされています。花柄は弱く残りにくいタイプです。

_20230212_145358
貴青玉
E. meloformisのことを貴青玉と呼んでいたみたいですが、最近ではE. meloformis系交配種のことを貴青玉と言っているみたいです。


Euphorbia Suzannae  Marl.
ポール・ステファン氏の解説 : ほぼ球形で複数の稜があります。長さ10mmまでのイボがあり、マミラリアのような外見です。灰緑色。若い時は単頭で、やがて枝分かれします。
※誤植があります。種小名は本来は小文字で、さらにsuzannaeではなくsusannaeです。

_20230210_230555
ポール・ステファン氏のコレクション。こちらには、Euph. Susannae Marl.と表記されていました。良くしまった美しい個体です。イボが長くて尖るタイプ。

DSC_0685
E. susannaeは日本では瑠璃晃と呼ばれることもありますが、あまり使われないかもしれません。私の所有個体はイボが短く丸味があるタイプです。そういえば、命名者のHermann Wilhelm Rudolf Marloth(ドイツ出身で南アフリカで活動した植物学者)の略はMarl.となっていますが、正式な学名の表記ではMarlothです。まあ、1937年の命名規約がどうなっていたかは分かりませんが。

以上がポール・ステファン氏のユーフォルビア・コレクションの紹介でした。しかし、まさか80年以上前のドイツのユーフォルビア・コレクションを写真で見られるとは思っておりませんでしたから、私も感銘を受けました。こういう記事をもっと書きたいと思うものの、中々古い時代の出版物は探しても見つからないことが多く難しいですね。一応は少しずつ探索を継続する予定です。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村

グロエネワルディ(Euphorbia groenewaldii)は南アフリカのレッドデータブックで、絶滅危惧種に指定されている希少な植物です。そんなグロエネワルディを保護していくにはどのようなことが必要でしょうか? その参考となるMarula Triumph Rasethe & Sebua Silas Semenyaの2019年の論文、『Community's Knowledge on Euphorbia groenewaldii: Its Populations, Threats and Conservation in Limpopo Province, South Africa』をご紹介します。この現地調査をどう捉え、如何なる保全をしたら良いでしょうか?

DSC_2132
Euphorbia groenewaldii

E. groenewaldiiは南アフリカのLimpopo州、Porokwane自治区のDalmada(準都市部)とGa-Mothiba(農村)の2つの地域に固有で、6つの集団が確認されています。その生息域の狭さから、南アフリカでは絶滅危惧種(A2ac)とされています。さらに、E. groenewaldiiは開発や違法伐採、採掘、踏みつけなどにより、個体数が減少しています。E. groenewaldiiは2003年及び2004年の法制定により採取や許可なしの取引を禁止され、保全計画の推奨を謳っています。
しかし、著者はE. groenewaldiiの生息著者の地域社会が、E. groenewaldiiに対してどのように考え、その保護についてどのように捉えているのかが重要かもしれないとしています。なぜなら、生息域の住人こそが、保全や法に対する利害関係者だからです。という訳で、著者は農村であるGa-Mothibaにおいて、E. groenewaldiiに対する意識調査を実施しました。

ランダムに抽選された参加者たちは、残念ながらE. groenewaldiiが保護されている絶滅危惧種であることを知りませんでした。しかし、調査の参加者はE. groenewaldiiの保全に対する関心は高く、E. groenewaldiiを脅かす可能性があると思われる要因とは何かをインタビューしたところ、降雨不足・干魃、土壌侵食などによる生息地の劣化、農村集落の拡大、種の保全に対する知識の欠如、採掘活動、人為的火災など、かなり正確に問題点を捉えていることが明らかとなりました。
とは言うものの、農村の拡大は住民の望みでもあり、舗装された道路の施設など開発が進むことを望んでいます。採掘活動も村の経済と雇用機会にとって重要ですが、石灰岩の間などに生えるE. groenewaldiiは採掘により根こそぎ破壊されてしまいます。人為的火災は枯れ草を燃やすことにより、牧畜のための新しい牧草の育成に必要な作業です。また、家畜による踏みつけについては懸念としては浮かんでこない項目でした。

以上が論文の簡単な要約です。
まず言えるのは、保護を法律で定めても周知させなければ意味がないということです。保全活動に関係していない農村の住民にも、正しく伝えれば問題を理解し鋭く考えることはインタビュー結果からも明らかです。
次に保護活動は学者や保護活動家だけが関わるものではなく、地域住民にも知識や理念、活動の趣旨を理解してもらい、住民も参加することが望ましいということです。保護活動は明らかに住民の経済活動の利害に反し、強硬に推し進めれば反発を招き保護活動も頓挫するでしょう。また、開発は住民の権利ですから、我々が文句を言うことは出来ません。先進国に住む人々が、低開発国の発展を阻害するのは実に傲慢なことです。
経済活動に伴う環境やグロエネワルディそのものに対する損害に対しては、代替手段を用意すべきです。やり方を工夫しダメージが最小となる手段を考えたり、あるいは村に別の雇用機会を設けるなどです。実際に動物の保護活動では、密猟者をレンジャーとして雇用することもあります。なぜなら、密猟は欧米人のするようなゲームハンティングではなく、あくまでも経済活動だからです。雇用があり賃金が払われるならば、わざわざ密猟などしないのです。
私が思い付くのは所詮はこの程度で、何一つとして有効な解決策を提示出来てはいません。まあ、世界中の学者や保護活動家の頭を悩ませる問題を、私が簡単に解決出来ないのは当たり前かもしれません。
皆様はこの調査結果をどう捉えたでしょうか? 市販されている多肉植物でも、原産地では絶滅の危機に瀕しているものも珍しくありません。多肉植物を栽培する皆様にも是非、一度考えていただきたい問題です。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

ここのところ2日続けて、旧・アロエ属についてゴニアロエ(Gonialoe)とアロイアンペロス(Aloiampelos)の記事を書きました。個人的に旧・アロエ属を含むアロエ類は気になっており、アロエ(Aloe sensu stricto)、アロイデンドロン(Aloidendron)、アロイアンペロス、(Aloiampelos)、クマラ(Kumara)、アリスタロエ(Aristaloe)、ゴニアロエ(Gonialoe)、ハウォルチア(Haworthia)、ハウォルチオプシス(Haworthiopsis)、ツリスタ(Tuesday)、ガステリア(Gasteria)、アストロロバ(Astroloba)についてぼちぼち集めたりしています。
このアロエとハウォルチアの分割は中々の衝撃でしたが、私は
2014年に出た『A Molecular Phylogeny and Generic Classification of Asphodelaceae Subfamily Alooideae : A Final Resolution of the Prickly Issue of Polyphyly in the Alooids?』という論文でアロエ類の遺伝子解析結果を見て、割と納得してしまってそれ以上調べませんでした。しかし、アロエやハウォルチアが分割された根拠となる論文がそれぞれにあるはずで、それらの論文を読んでいないのは片落ちではないかと今更ながら思った次第です。

2014年の論文の記事①
2014年の論文の記事②

さて、以前から学名を調べていると、ハウォルチオプシスやツリスタの命名者にやたらとG.D.Rowleyが出てくるなあと思っていました。実はハウォルチオプシスやツリスタはG.D.Rowleyがハウォルチアから分離させたことが原因でした。
その論文はGordon D. Rowleyの 2013年の、『HAWORTHIOPSIS AND TULISTA - OLD WINE IN NEW BOTTLE』です。「新しいボトルに入った古いワイン」という副題が面白かったので、記事のタイトルにしました。この論文の主題はツリスタ属とハウォルチオプシス属です。かつて硬葉系ハウォルチアと呼ばれていたハウォルチオプシスは、この論文で16種が命名されました。
現在、ハウォルチオプシスは19種類が認められていますが、G.D.Rowleyはそのうち16種類をハウォルチオプシスとしています。G.D.RowleyはHaworthiopsis koelmaniorum、Haworthiopsis pungensはツリスタ属としました。また、Haworthiopsis 
henriquesiiは新しく2019年に命名されたため、この論文には登場しません。

ハウォルチオプシス19種類の情報は以外の3つの記事をご参照ください。


ツリスタ属はG.D.Rowleyが命名した訳ではなく、1840年にRafinesqueが命名した属名です。Rafinesqueは当時Aloe pumilaと呼ばれていた植物にTulista margariferaと命名しましたが認められませんでした。しかし、この忘れ去られていたツリスタ属をG.D.Rowleyが復活させたということです。どうも、副題の「新しいボトルに入った古いワイン」とはツリスタ属のことのようです。確かに論文が書かれた2013年から遡ること73年前の命名ですから、73年もののワインを新たな装いで出したようなものかもしれませんね。
さて、この論文におけるツリスタ属は、現在とは結構異なります。現在のツリスタ属の正式メンバーである、Tulista marginata、Tulista pumila、Tulista kingianaはすでに含まれていますが、Tulista minorはいませんね。ちなみに、Aloe kingianaをG.D.Rowleyがはじめてツリスタ属としてTulista kingianaとした訳ですが、これは認められずに2017年に
Gideon F.Sm. & MoltenoによってTulista kingianaと命名され直しました。これは、Von PoellnitzがHaworthia kingianaと命名した論文を引用しなければなりませんが、G.D.Rowleyはその引用元を間違えていたため認められませんでした。
DSC_2030
Tulista pumila (L.) G.D.Rowley

DSC_2028
Tulista kingiana (Poelln.)
                       Gideon F.Sm. & Molteno


また、この論文ではTulistaは13種類がリストアップされていますが、Astrolobaが7種、後のHaworthiopsisが2種、Aristaloeが1種が含まれていました。現在Astrolobaは10種類が認められていますが、この論文の後に命名された3種類、Astroloba cremnophila、Astroloba robusta、Astroloba tenaxは含まれていません。

Astrolobaについては過去に記事としたまとめています。

DSC_1990
Aristaloe aristata

以上が論文の内容です。
結局、G.D.Rowleyの主張はすべて認められているわけではありませんが、Haworthiopsisの創設とTulistaの復活を含む非常に重要な論文です。アロエ類が命名された論文はまだありますから、これから少しずつ読んでいくつもりです。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

昨日はメキシコ原産のソテツであるDioon eduleの情報についての記事を書きましたが、本日はD. eduleの論文をご紹介したいと思います。D. eduleはDioonの代表種であり、様々な角度から研究がなされています。非常に面白そうな論文が沢山あります。しかし、最近ではやや忙しく中々思ったように論文を読めていないのが悩みです。

DSC_2054
Dioon edule

そんな中、読んだ論文はAndrew P. Vovidesの1990年の論文、『Spatial Distribution, Survival, and Fecundity of Dioon edule (Zamiaceae) in a Tropical Deciduous Forest in Veracuruz, Mexico, with Notes on Its Habitat』です。

著者は野生のD. eduleが集中するメキシコのVeracuruz州中央の熱帯林で、その生長と繁殖に関するデータを4年間にわたり収集しました。
まずは実生の定着具合を見てみましょう。調査によると、高さ10cm以下の若い苗はほぼ枯れてしまうことが分かりました。やはり、小さな内は環境の変化や乾燥に耐えられないのでしょう。しかし、高さ40~50cmくらいに生長すると枯れてしまう個体は5%以下でした。ある程度生長できれば環境の変化にも対応出来るのでしょう。
次に樹齢を見てみましょう。調査した区域の139個体のD. eduleの中で最高齢は2001~2250歳と見られる個体が1本ありました。1501~2000歳の個体は0本、1251~1500歳の個体が1本、1001~1250歳の個体が2本、751~1000歳の個体が2本、501~750歳の個体が11本、251~500歳の個体が13本、0~250歳の個体が109本ありました。ここで分かることは、D. eduleは非常に寿命が長いということだけではありません。0~250歳の個体が109本ということは、この250年の間に生き残った実生は109本しかないということでもあります。この0~250歳の死亡率は88%にもなるようです。

種子を人工的に発芽させた場合、発芽率は98%と非常に高いことが分かりました。しかし、野生状態だとネズミ(Peromyscus mexicanus)に種子を食べられてしまうことが明らかとなっています。しかし、一般的にソテツには毒があり、ラットにD. eduleの種子を砕いて与えると24時間以内に死亡してしまいます。つまり、D. eduleの種子を食べるP. mexicanusはソテツの毒に耐性があるということです。
また、新しく葉は柔らかく、Eumaeus deboraという蝶の幼虫により食害されます。
実生が枯死する最大の要因は、おそらく極端な乾燥です。1983年の乾季には1~2歳のD. eduleはほぼ死滅しました。さらに、D. eduleの実生を人工的に2年間育てた後に2週間の乾燥させたことにより、20個体中18個体が枯死しました。やはり、若い個体にとって乾燥は大敵のようです。
D. eduleの生息地は山火事が起きやすく、大型の個体は耐えられますが、苗は耐えられないでしょう。しかし、山火事により一時期に土壌中に窒素が増加することにより、開花に寄与しているということです。結果的に種子の生産が増加するということです。


生育環境を見てみましょう。土壌の深さを測定すると、D. eduleの84%はたった6~20cmしかない浅い土壌に生えていることが分かりました。多くの場合、岩場に生えていました。土壌はカリウムとリン酸が貧弱であり、かなりの貧栄養のようです。pHは7.7でした。この岩場に育つことにより、種子が岩の隙間に入りネズミに食べられてしまう可能性は低くなるようです。
D. eduleには菌根が確認されているそうです。あまり知られていませんが、野生の樹木の根はキノコの菌糸で被われており、樹木とキノコの間で養分のやり取りがあり共生関係にあります。これを菌根と呼びます。菌根はまれな現象ではなく、森林には普遍的に存在し非常に重要な仕組みであることが分かってきました。D. eduleも共生している菌根から水分や栄養をもらい、乾燥し栄養の少ない過酷な環境に耐えているのでしょう。

以上が論文の簡単な要約となります。D. eduleが尋常ではない寿命を持つこと、あまりに過酷な環境ゆえに実生苗がほとんど死滅してしまうこと、そしてその過酷な環境に耐える仕組みがあることが分かりました。このような調査は単にD. eduleの科学的な知見が増えるだけではなく、将来保護を行うための基本的な下地にもなります。しかし、このような地味な研究には資金が中々出ない現状のため、多くの植物が調査すらされずに人知れず開発や違法採取で絶滅していることは大変悲しいことです。著者はD. eduleの繁殖にも関わっているようですから、そこら辺の活動についてもそのうち記事に出来たらと思っておりません。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

近年、サンセヴィエリア属(Sansevieria、サンスベリア、サンセベリア)がドラカエナ属(Dracaena、ドラセナ)に吸収されてしまうという驚くべきニュースを目にしました。当該論文は公開されていないので、残念ながら読めていないのですが、その辺りの話は最近記事にしました。


その関連で少し興味が湧いたので、他にも何か論文はないかと調べてみたところ、Iris van Kleinweeらの2021年の論文、『Plastid phylogeny  of the Sansevieria clade (Dracaena ; Asparagaceae) resolves a rapid evolutionary radiation』を見つけました。ただし、この論文は全文を公開していないため、イントロと方法のみしか示されておりません。しかし、遺伝子解析結果は公開されていましたから、見てみましょう。

取り敢えず、サンセヴィエリアはドラカエナに吸収されてしまいましたが、ドラカエナの中でもサンセヴィエリアはまとまったグループのようです。このグループをSansevieria cladeと呼んでいるようです。しかし、Sansevieria cladeに含まれる種の分類はよく分かっていませんでした。どうやら、現存する旧・Sansevieriaたちは、新しい時代に急速に進化して様々な種類に分かれた可能性があるのです。
遺伝子解析はすべての遺伝子を調べているわけではなく、植物種の違いに関わらずよく使われる遺伝子があります。しかし、それらの遺伝子では、新しい時代に急速に進化した場合は上手く種を分離出来ないのです。ですから、この論文では実に7種類もの遺伝子を解析して、サンセヴィエリアの急速な進化に迫っています。
以下に示す分子系統では、A1、A2、B、C、D、Eの6グループに分かれています。このA~Eまではまとまりがあり、旧・Sansevieriaは近縁です。

                        ┏グループA1
                    ┏┫
                    ┃┗グループA2
                ┏┫
                ┃┗━グループB
            ┏┫
            ┃┃┏━グループC
            ┃┗┫
        ┏┫    ┗━グループD
        ┃┃
    ┏┫┗━━━D. angolensis
    ┃┃
    ┃┗━━━━グループE
┏┫
┃┃┏━━━━D. camerooniana
┃┗┫
┫    ┗━━━━D. sambiranensis
┃ 
┗━━━━━━D. aletriformis

グループA1
A1には、D. zeylanica、D. burmanica、D. roxburghianaが含まれます。インド亜大陸の原産です。
・D. zeylanicaはSansevieria zeylanicaのことです。Sansevieria ensifolia、Sansevieria grandicuspis、Sansevieria indica、Sansevieria pumilaと同種です。Cordyline zeylanicaと呼ばれたこともあります。
・D. burmanicaはSansevieria burmanicaのことです、Sansevieria maduraiensisと同種です。
・D. roxburghianaはSansevieria roxburghianaのことです。また、1805年にはSansevieria zeylanicaという学名もつけられましたが、これはD. zeylanica (Sansevieria zeylanica)とは別につけられたもののまったく同じ学名です。当然ながら認められていない学名です。

グループA2
A2には、D. pinguicula、D. perrotii、D. powellii、D. hanningtonii、D. arborescensが含まれます。
立ち上がり茎が伸びるタイプで、主に東アフリカの原産です。
・D. pinguiculaはSansevieria pinguiculaのことです。
・D. perrotiiはSansevieria perrotiiのことです。Sansevieria robusta、Sansevieria ehrenbergiiと同種です。
・D. powelliiはSansevieria powelliiのことです。
・D. hanningtoniiはPleomele hanningtoniiのことです。Dracaena oldupai、Sansevieria rorida、Sansevieria ehrenbergii、Sansevieria roridaと同種です。ちなみに、D. powelliiの異名の1つにS. ehrenbergiiがあり、D. hanningtoniiとかぶりますが、D. powelliiの異名のS. ehrenbergiiは後から同じく学名を付けてしまったパターンです。
・D. arborescensはSansevieria arborescensのことです。Sansevieria zanzibaricaと同種です。

グループB
Bには、D. raffllii、D. testudinea、D. canaliculata、D. liberica、D. longiflora、D. scimitariformis、D. sinus-simiorum、D. stuckyi、D. subspicata、D. spathulata、D. aethiopica、D. halliiが含まれます。アフリカ南部中心に分布します。
D. raffllii、D. testudinea~D. liberica、D. longiflora~D. haliiの3グループに分けられます。
・D. rafflliiはSansevieria rafflliiのことです。
・D. testudineaはSansevieria brauniiのことです。種小名が変わっていますが、これはもともとDracaena brauniiという植物が先に存在したため、同じ学名となってしまうことを避けるための処置です。
・D. canaliculataはSansevieria canaliculataのことです。Sansevieria schimperi、Sansevieria sulcataと同種です。
・D. libericaはSansevieria libericaのことです。Sansevieria chinensis、Sansevieria gentilisと同種です。
・D. longifloraはSansevieria longifloraと同種です。
・D. scimitariformisはSansevieria scimitariformisのことです。
・D. sinus-simiorumはSansevieria sinus-simiorumのことです。
・D. stuckyiはSansevieria stuckyiのことです。Sansevieria andradaeと同種です。
・D. subspicataはSansevieria subspicataのことです。
・D. spathulataはSansevieria cocinnaのことです。Sansevieria subspicata var. cocinnaは同種です。種小名が変わっていますが、これはもともとDracaena cocinnaという植物が先に存在したため、同じ学名となってしまうことを避けるための処置です。
D. aethiopicaはSansevieria aethiopicaのことです。Sansevieria thunbergii、Sansevieria caespitosa、Sansevieria glauca、Sansevieria scabrifoliaは同種です。
D. halliiはSansevieria halliiのことです。

グループC
Cには、D. parva、D. singularis、D. phillipsiae、D. nilotica、D. dawei、D. bacularis、D. dooneri、D. trifasciata、D. francisii、D. sordida、D. suffruticosa、D. serpenta、D. newtoniana、D. conspicua、D. volkensis、D. hargeisana、D. forskalianaが含まれます。アフリカ大陸に広く分布します。
D. parva~D. trifasciata、D. francisii~D. serpenta、D. newtoniana~D. forskalianaの3グループに分けられます。
・D. parvaはSansevieria parvaのことです。Sansevieria bequaertiiは同種です。
・D. singularisはSansevieria singularisのことです。Sansevieria fischeriは同種です。
・D. phillipsiaeはSansevieria phillipsiaeのことです。
・D. niloticaはSansevieria niloticaのことです。Sansevieria massaeは同種です。
・D. daweiはSansevieria daweiのことです。
・D. bacularisはSansevieria bacularisのことです。
・D. dooneriはSansevieria dooneriのことです。
・D. trifasciataはSansevieria trifasciataのことです。Sansevieria aureovariegata、Sansevieria craigii、Sansevieria jacquinii、Sansevieria laurentii、Sansevieria trifasciata var. laurentii、Sansevieria zeylanica var. laurentiiは同種です。
・D. francisiiはSansevieria francisiiのことです。
・D. sordidaはDracaena variansの異名です。D. variansはSansevieria variansのことです。Sansevieria patens、Sansevieria sordida、Dracaena patensは同種です。
・D. suffruticosaはSansevieria suffruticosaのことです。
・D. serpentaはSansevieria gracilisのことです。種小名が変わっていますが、これはもともとDracaena gracilisという植物が先に存在したため、同じ学名となってしまうことを避けるための処置です。とはいえ、このD. gracilisは問題のある学名で、1796年に命名されたD. gracilisはDracaena reflexa var. angustifoliaの異名で、1808年に命名されたD. gracilisはDracaena ellipticaの異名です。これだけ使い降るされた学名ですから、3回目の使用となれば混乱は必至でしょうから使われないのは当然です。
・D. newtonianaはSansevieria newtonianaのことです。
・D. conspicuaはSansevieria conspicuaのことです。
・D. volkensisはSansevieria volkensisのことです。Sansevieria intermedia、Sansevieria polyrhytis、Sansevieria quarriaは同種です。
・D. hargeisanaはSansevieria hargeisanaのことです。
・D. forskalianaはSansevieria forskalianaのことです。Sansevieria guineensis var. angustior、Sansevieria elliptica、Sansevieria abyssinica、Convallaria racemosaは同種です。

グループD
Dには、D. zebra、D. senegambica、D. petheraが含まれます。D. zebraとD. senegambicaは非常に近縁です。
・D. zebraはSansevieria metallicaのことです。
種小名が変わっていますが、これはもともとDracaena metallicaという植物が先に存在したため、同じ学名となってしまうことを避けるための処置です。ただし、Dracaena metallicaはCordyline fruticosaの異名です。
・D. senegambicaはSansevieria senegambicaのことです。Sansevieria cornuiは同種です。
・D. petheraはSansevieria kirkiiのことです。
種小名が変わっていますが、これはもともとDracaena kirkiiという植物が先に存在したため、同じ学名となってしまうことを避けるための処置です。

グループE
EにはD. kenyensis、D. dawnsii、D. caulescens、D. pearsoniiが含まれます
・D. kenyensisはデータベースに情報がありませんが、どうやらSansevieria bellaのことのようです。 Sansevieria bellaは現在ではDracaena neobellaとされています。
種小名が変わっていますが、これはもともとDracaena bellaという植物が先に存在したため、同じ学名となってしまうことを避けるための処置です。ただし、このDracaena bellaはCordyline fruticosaの異名です。
・D. dawnsiiはSansevieria dawnsiiのことです。
・D. caulescensはSansevieria caulescensのことです。
・D. pearsoniiはSansevieria pearsoniiのことです。Sansevieria deserti、Sansevieria rhodesianaのことです。



A~Eのグループに入らない種類についてですが、D. angolensisはSansevieria内にありますが、A~Eのグループには入りません。
・D. angolensisはSansevieria angolensisのことです。Sansevieria cylindrica、Sansevieria livingstoniaeと同種です。
・D. cameroonianaはSansevieriaではなく、はじめからDracaenaでしたが、Sansevieriaと近縁のようです。
・D. sambiranensisはSansevieria sambiranensisのことです。他のSansevieriaとは系統が異なります。
・D. aletriformisはSansevieriaではありません。Yucca aletriformisという異名があります。

Sansevieriaの葉の形状は様々で、葉の厚みも様々です。これは、乾燥に対する適応を示しています。しかし、葉の形状はグループごとに似ているわけではないようです。多肉質な葉は近縁ではないあちこちに現れるようです。
また、タイトルにありますように、Sansevieriaは急速に進化して様々な種類に分化したようです。どうやら、Sansevieriaは約500万年前に登場したようです。非常に昔なような気がしますが、新生代新第三紀終盤の鮮新世ですから、歴史年代からすると最近です。しかも、現在の種類が分化し始めたのは、第四紀更新世以降ですから、日本では旧石器時代という新しさです。本当に新しく現れた多肉植物と言えますね。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

今年の正月明けに五反田TOCで開催された、新年のサボテン・多肉植物のビッグバザールへ行って来ました。今回のビッグバザールは、アロエがいつもより多く珍しいものも沢山ありました。悩みましたが、マダガスカル原産の小型アロエであるバケリ(Aloe bakeri)を購入しました。バケリはアロエにしては葉は薄くて非常に硬く、まるでディッキア(Dyckia)のようです。

DSC_2173
Aloe bakeri

バケリは園芸店では見かけないアロエですが、どのような多肉植物なのでしょうか? 少し調べてみました。取り敢えず論文を当たってみましたが、2019年のColin C. Walkerの論文、『Aloe bakeri - a critically endangered highly localized Madagascan endemic』が見つかりました。早速内容を見ていきましょう。

イギリスの植物学者であるGeorge Francis Scott-Elliotは1888年から1890年にかけてマダガスカルを訪れました。マダガスカル最南東にあるFort Dauphin (Taolagnaro, Tolanaro, Tolagnaro)での採取で、Aloe bakeriは発見されました。Scott-Elliotはキュー王立植物園のアロエの専門家であるJohn Gilbert Bakerに対する献名として、1891年にマダガスカルで採取した新しいアロエにAloe bakeri Scott-Elliotと命名しました。
 
1994年にA. bakeriをGuillauminiaとする、つまりはGuillauminia bakeri (Scott-Elliot) P.V.Heathがありました。このGuillauminiaは、Guillauminia albiflora(Aloe albiflora)のために、1956年にBertrandにより提唱された属です。Heathは1種類しかなかったGuillauminiaを拡大し、マダガスカルの矮性アロエであるA. bakeri、A. bellatula、A. calcairophylla、A. descoingsii、A. rauhiiを含ませましたが、それまではGuillauminiaが注目を浴びることはなく無視されてきました。しかし、アロエの権威であったReynoldsはGuillauminiaを採用しないなど、浸透したとは言いがたいようです。しかも、1995年にGideon F. Smithらにより発表された『The taxonomy of Aloinella, Guillauminia and Lemeea (Aloacaea)』ではGuillauminiaを詳細に分析し、アロエ属とは異なりGuillauminiaのみに共通する特徴がないことなどが指摘され、Guillauminiaは明確に否定されています。さらに、近年の遺伝子解析の結果では、Guillauminiaの所属種同士が必ずしも近縁ではなく、アロエ属の中に埋没してしまうことが明らかとなりました。よって、現在Guillauminiaは認められておりません。
_20230121_200319
Aloe albiflora

次に自生地を調査した植物学者たちの報告を見てみましょう。Gilberd Reynoldsは1955年の6月から10月まで、マダガスカルでアロエを探して、自動車で4000マイル(6437km)以上の距離を運転しました。ReynoldsはFort Dauphinの近くでAloe bakeriを大量に見つけました。それは、50から100の密集したグループで生長していました。
次いで、Werner Rauhはマダガスカルに9回旅行しました。Rauhの1964年の報告では、Fort Dauphin付近でA. bakeriを観察しています。A. bakeriはTolanaro北西にあるVinanibe付近のまばらな花崗岩の露頭の腐植土が溜まった岩の亀裂で育つとしています。

CormanとMaysは2008年の報告で、去年(2007年)にマダガスカル南部を訪れたNorbert RebmannとPhilippe Cormanは、Euphorbia millii var. imperataeとともに生育するFort Dauphin付近のA. bakeriを見つけました。しかし、近くの港の開発に必要な石材採取のために、A. bakeriの生息地が破壊されていました。CormanはかつてRauhが観察した岩場で、A. bakeriは4個体しか見つかりませんでした。A. bakeriを発見したScott-Elliotは砂丘にも生息するとしていましたが、RebmannもCormanも砂丘ではA. bakeriを見つけることは出来ませんでした。
Castillon & Castillonは2010年の報告で、Taolagnaro付近の岩だらけの丘は、商業港と都市部の産業開発のため2年前に消滅したため、野生のA. bakeriは絶滅してしまったとしています。


以上が論文の簡単な要約となります。そういえば、1902年に命名されたAloe bakeri Hook.f. ex Bakerというアロエもありますが、こちらはAloe percrassa Tod.の異名です。A. percrassaは大型アロエですから、まったく似ていませんから間違いようはありませんね。
著者は絶滅したかは断言していませんが、キュー王立植物園のデータベースではA. bakeriは「絶滅」と表記されています。栽培は難しくないようですから、栽培品の維持はされています。しかし、自然環境に自生する多肉植物は非常に美しいものですから、大変悲しいことです。これ以上、多肉植物が絶滅してしまうことが起きてほしくありません。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

昨年末に千葉で開催された木更津Cactus & Succulentフェアで、低木状のユーフォルビアであるバルサミフェラ(Euphorbia balsamifera)を購入しました。バルサミフェラはあまり見かけないユーフォルビアでしたが、最近のイベントではポツポツ見かけるようになりました。国内ではあまり流通していませんから、割と高価です。しかし、私のバルサミフェラは現在室内栽培しているとは言うものの、明け方はかなり冷え込むにも関わらず新しい葉を盛んに出しています。思ったより丈夫みたいですから、値段も徐々に落ち着いていくでしょうね。

_20230119_013547
Euphorbia balsamifera

そんなバルサミフェラですが、非常に分布が広く生息域が分断されて距離があることが知られています。そのため、伝統的にアフリカ北部に広く分布するE. balsamifera subsp. balsamiferaと、アフリカの角~アラビア半島原産のE. balsamifera subsp. adenensisに分けられてきました。しかし、実際にはsubsp. adenensisは種として独立し、Euphorbia adenensisとなりました。

実はここからが本題です。どうやら、バルサミフェラにはまだ謎が隠されているようなのです。というわけで、本日ご紹介するのはRichard Riinaの2020年の論文、『Three sweet tabaibas instead of one : splitting former Euphorbia balsamifera s. l. and resurrecting the forgotten Euphorbia sepium』です。
論文のタイトルの後半は、「広義のEuphorbia balsamiferaを分割し、忘れられたEuphorbia sepiumを復活させる」ということですから、バルサミフェラからE. sepiumを分離するということです。さて、この「広義(s.l.=sensu lato)のバルサミフェラ」とは何かですが、ここではE. adenensisやE. sepiumを含んだバルサミフェラを示しています。逆にE. adenensisやE. sepiumを含まないバルサミフェラは「狭義(s.s.=sensu stricto)のバルサミフェラ」と呼んでいます。

一度述べていますが、広義のバルサミフェラはアフリカの角~アラビア半島はアフリカ北西部~西部などの個体群と分布に距離がありました。そのため、広義のバルサミフェラについて、各地からサンプリングして遺伝子を解析しました。その結果を示します。

┏━━━━E. sepium

┃            ┏E. adenensis
┗━━━┫
                ┗E. balsamifera s.s.

まずは、広義のバルサミフェラが3つに分割できるということが分かります。狭義のバルサミフェラはモロッコ、西サハラ、カナリア諸島の原産です。驚くべきことに、アフリカ北西部に分布する狭義のバルサミフェラに近縁なのは、分布の離れたE. adenensisでした。しかし、最大の驚きは狭義のバルサミフェラやアデネンシスと遺伝的に距離がある種があったのです。論文ではこの種を、昔命名されたものの忘れ去られていたE. sepiumを適用しました。実はこのセピウムは、アルジェリア、ベニン、ブルキナファソ、中央アフリカ、チャド、コンゴ、ガンビア、ガーナ、ギニア、リベリア、マリ、モーリタニア、ニジェール、セネガル、トーゴ、西サハラと非常に分布が広く、かつて広義のバルサミフェラの分布の大半を占めています。

ここで疑問が浮かびます。広義のバルサミフェラは三分割されたとは言うものの、非常に近縁であることは間違いありません。では、どのような道筋で進化したのでしょうか。通常ならば、狭義のバルサミフェラ→セピウム→アデネンシスか、アデネンシス→セピウム→狭義のバルサミフェラが一番分かりやすいでしょう。または、広義のバルサミフェラの広い分布域から、徐々に3種類に分かれたというシナリオもあるでしょう。しかし、予想外にも狭義のバルサミフェラとアデネンシスが近縁ですから、上のシナリオはすべてご破算です。例えば、昔は狭義のバルサミフェラあるいはアデネンシスの分布が今より広く隣接していたとか、狭義のバルサミフェラとアデネンシスの間の空白に絶滅した未知の種が存在したとか、考えられるシナリオは沢山あります。

バルサミフェラの学名についてまとめましょう。
バルサミフェラは、1789年にEuphorbia balsamifera Aitonと命名されました。1887年に命名されたEuphorbia adenensis Deflersは、1965年にはEuphorbia balsamifera subsp. adenensis (Deflers) P.R.O.Bally、つまりはバルサミフェラの亜種とされましたが、地理的な隔離などによりやがて独立種により戻されました。また、1911年に命名されたEuphorbia rogeri N.E.Br.は、1938年にEuphorbia balsamifera var. rogeri (N.E.Br.) Maire1948年にはEuphorbia balsamifera subsp. rogeri (N.E.Br.) Guinea とする意見もありましたが、E. rogeriはE. balsamiferaと同種とされています。しかし、1911年に命名されたEuphorbia sapium N.E.Br.は、1938年にEuphorbia balsamifera subsp. sepium (N.E.Br.) Maireとされてきましたが、再びEuphorbia sepiumに戻り、広義のバルサミフェラは3種類に分割されることになったのです。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

Fouquieriaは観峰玉(F. columnaris)やF. fasciculataが有名で、現地球が多肉ブームというかコーデックス・ブームに乗っかり高額で売買されました。しかし、最近では実生苗も販売されるようになり、イベントでは様々な種類が見られるようになりました。私もなんだかんだで実生苗をポツポツと購入しているうちに6種類集まりました。ちなみにFouquieriaは現在11種が認められています。一応ですがその11種類のFouquieriaの命名年を以下に示しましょう。

1823年 Fouquieria formosa
1848年 Fouquieria splendens
1885年 Fouquieria columnaris(観峰玉)
1903年 Fouquieria fasciculata
              Fouquieria macdougalii
1909年 Fouquieria purpusii
1911年 Fouquieria burragei
1925年 Fouquieria diguetii
1939年 Fouquieria shrevei
1942年 Fouquieria ochoterenae
1961年 Fouquieria leonilae

簡単に補足説明すると、観峰玉はIdria属とされることもありますが、現在ではFouquieria属です。また、BronniaやPhiletaeriaも、Fouquieriaの異名とされています。

DSC_1488
Fouquieria ochoterenae

DSC_2332
Fouquieria leonilae

DSC_1646
Fouquieria diguetii

DSC_1716
Fouquieria macdougalii

DSC_1599
Fouquieria formosa

DSC_1590
Fouquieria columnaris

さて、そんなFouquieriaですが、2018年に発表された『Recent radiation and  dispersal of an ancient lineage : The case of Fouquieria (Fouquiericeae, Ericales) in American deserts』という論文では、現在のFouquieriaが分岐した年代を、遺伝子解析から推測しています。論文によると、Fouquieriaの出現は白亜紀後期にまで遡るそうです。白亜紀は中生代末期ですから、まだ恐竜が闊歩していた時代にFouquieriaは生まれたということになります。中生代の次は新生代が始まり、新生代は第3紀と第4紀に分けられます。第3紀は古第3紀と新第3紀に分けられ、現在のFouquieriaの種類はこの新第3紀に分岐したようです。新第3紀は2303万年~258万年前の期間です。新第3紀は人類誕生の頃ですから、現在のFouquieriaたちは割と新しい種類ということになります。しかも、ただ1種類から始まり、新第3紀に急速に10種類(※)に進化したのです。
※F. burrageiはこの論文では取り扱
っていないため不明です。

                            ┏━━F. ochoterenae
                        ┏┫
                        ┃┗━━F. leonilae
                    ┏┫
                    ┃┗━━━F. diguetii
                    ┃
                ┏┫        ┏━F. splendens
                ┃┃┏━┫
                ┃┗┫    ┗━F. shrevei
    ┏━━┫    ┃
    ┃        ┃    ┗━━━F. macdougalii
    ┃        ┃
┏┫        ┗━━━━━F. formosa
┃┃
┃┗━━━━━━━━F. columnaris

┃                            ┏━F. purpusii
┃                        ┏┫
┗━━━━━━┫┗━F. fasciculata 1
                            ┃
                            ┗━━F. fasciculata 2


遺伝子解析の結果からは、Fouquieriaは2つのグループに分けられます。F. purpusiiとF. fasciculataは現生のFouquieriaの中では古い時代に他の種類と分岐しました。次にF. columnarisだけは他の種類から孤立しています。F. ochoterenae、F. leonilae、F. diguetiiは姉妹群で、F. splendens、F. shrevei、F. macdougaliiの群と非常に近縁です。F. formosaはこれらの6種類と近縁です。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

サンスベリア、あるいはサンセベリアと呼ばれる植物があります。ラテン語読みなら「サンセヴィエリア」ですかね。まあ、昔からある斑入りのSansevieria trifasciataがすっかり普及しましたが、最近では様々な種類が販売されているようです。そんなサンスベリアですが、私自身はそれほど興味はありません。しかし、ダシリリオンを調べていた時に、また余計な情報を得てしまいました。なんと、サンスベリア属は現在では存在せず、ドラセナ属(Dracaena、ラテン語読みでドラカエナ)に統一されてしまったというのです。その論文では詳細がわかりませんから、その理由を探ってみました。

_20230113_204359
ボウチトセランの花

イギリスのキュー王立植物園のデータベースを見てみたところ、サンセヴィエリアはドラカエナの異名とありました。その根拠として、2021年に出された『New nomenclatural and taxonomic adjustments in Dracaena (Asparagaceae)』という論文が指定されていました。しかし、この論文は一般に公開されていませんから概要しかわかりません。しかし、概要を読むと、遺伝子解析の結果から、サンセヴィエリアはドラカエナに含まれてしまうということです。実際の分子系統図を見れないのは残念ですが仕形ありません。
とりあえず、データベースでサンセヴィエリア属の情報を検索してみます。サンセヴィエリア属はCarl von Linneの弟子で鎖国下の日本の出島にも滞在したこともあるCarl Peter Thunbergが1794年に命名したSansevieria Thunb. nom. cons.です。属名は[属名]+[命名者]ですが、通常は命名者を省略して属名だけですが、論文(特に分類学)だと命名者もセットで記入されます。ここでは[属名]+[命名者]+[nom. cons.]となっています。このnom. cons.とは、保存名(保留名)のことです。保存名とは命名規約を厳密に適用すると、今まで使用されてきた学名から変更しなくてはならず、混乱する場合などに維持される学名です。


ただし、サンセヴィエリア属の項目には、'This name is a synonym of Dracaena'とあり、要するにサンセヴィエリアは異名でドラカエナになったということです。実際に最も一般的なサンセヴィエリアであるSansevieria trifasciataを調べてみると、詳細な情報はなくなっており学名はDracaena trifasciataになったからそちらを見るようにとあります。変更後のDracaena trifasciataを見ると、こちらには様々な情報が記載されていました。こちらにはnom. cons.の表記もありませんし、完全にサンセヴィエリアはドラカエナに吸収されてしまったようです。

とりあえず、サンセヴィエリアの有名な種類であるアツバチトセラン、ボウチトセラン、ツツチトセランの3種類について現状がどうなっているのか調べてみました。

①アツバチトセラン
まずは、代表的なサンセヴィエリアであるアツバチトセランです。アツバチトセランは、1903年にSansevieria trifasciata Prain
命名されましたが、2017年にDracaena trifasciata (Prain) Mabb.が提案され現在はこの学名が認められています。また、アツバチトセランには亜種があり、D. trifasciata subsp. trifasciataとD. trifasciata subsp. sikawaeがあり、それぞれに異名があります。

subsp. trifasciataには、1904年に命名されたSansevieria laurentii De Wild.、1911年に命名されたSansevieria jaquinii N.E.Br.、1912年に命名されたSansevieria craigii Anon.、1915年に命名されたSansevieria trifasciata var. laurentii (De wild.) N.E.Br.という異名があります。

subsp. laurentiiは2019年にSansevieria trifasciata var. laurentii R.H.Wbb & Yingerと命名されましたが、2021年にDracaena trifasciata subsp. sikawae (R.H.Wbb & Yinger) Takaw.-Ny. & Thiedeとなりました。


②ボウチトセラン
ボウチトセランは、1859年にSansevieria cylindrica Bojar ex Hook.と命名され、この学名が最も普及しています。しかし、実際には1861年に命名された Sansevieria angolensis Welw. ex Carriereの系統が正しい学名とされているようです。通常は先に命名された学名が優先ですから、S. cylindricaが優先されるはずです。しかし、実際にはS. angolensisが正しいとされる理由は不明です。詳しく調べる必要がありそうです。S. angolensisは命名者がWelw. ex Carriereとなっていますが、これはWelw.が命名したものの正式な命名の要件を満たしていなかったため、1861年にCarriereがWelw.を引用して記載し直したということでしょう。つまりは、Welw.の命名は1861年よりも前ということになりますが、このことがS. angolensisを優先する理由となっているかはわかりません。

さて、ボウチトセランの学名は1861年に命名されたSansevieria angolensis Welw. ex Carriereでしたが、2018年にDracaena angolensis (Welw. ex Carriere) Byng & Christenh.となりました。ボウチトセランには1932年に命名されたSansevieria livingstoniae Rendleという異名もあります。また、異名であるS. cylindricaには、1891年にAcyntha cylindrica (Bojar ex Hook.) Kuntze、1923年に命名されたCordyline cylindrica (Bojar ex Hook.) Brittonなどサンセヴィエリア属ではないという意見もありました。1915年にはSansevieria cylindrica var. patulaという変種も提唱されましたが、現在では認められておりません。

③ツツチトセラン
ツツチトセランは、1903年にSansevieria stuckyi God.-Leb.と命名されましたが、2018年にDracaena stuckyi (God.-Leb.) Byng. & Christenh.となりました。D. stuckyiは、1932年にAcyntha stuckyi (God.-Leb.) Chiov.とする意見もありました。また、S. stuckyiの命名年である1903年に同じ命名者により、Sansevieria andradae God.-Leb.が命名されていますが、現在ではD. stuckyiと同種とされています。ちなみに、この時の記載に問題があったようで、同じく1903年にSansevieria andradae God.-Leb. ex Geromeとなっています。

最後に
さて、このようにサンセヴィエリアについて多少調べてみましたが、サンセヴィエリア属からドラカエナ属に移動するに際して種小名が変わっているものも結構あるみたいです。
それはそうと、今回はキュー王立植物園のデータベースを参照としましたが、それ意外のすべてのデータベースがサンセヴィエリアをドラカエナに変更していないようです。
サンセヴィエリア属はそれなりに種類があるため、かなり大幅な変更でしょうから現在は移行期間中といった感じなのかもしれません。しかし、サンセヴィエリアの名前を残す残さない関係なく、サンセヴィエリアはドラカエナの一部であるであることは覆しようがありません。サンセヴィエリアからドラカエナへの変更の流れは止められないでしょう。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

私はユーフォルビア好きで、まあそのほとんどが普及種ですが育てています。ただ、ユーフォルビアには毒があり、扱いには多少なりとも気を付ける必要があります。しかし、やはり毒があるパキポディウムについては、なぜか語られることはありません。パキポディウムに毒? と思った方もおられるかも知れませんが、パキポディウムはキョウチクトウの仲間ですから、毒があることは意外とまではいかないのです。ただし、パキポディウムは別に毒が滲み出ているわけではありませんから、葉を毟って食べたりしない限りは特に害はありません。
日本ではパキポディウムと言ったらマダガスカル原産種が圧倒的で、P. rorulatum系(gracilius, cactipesなど)やP. brevicaule、P. horombense、P. densiflorum、P. windsoliiが主流です。これらのマダガスカル原産種は枝を剪定することは基本的にありませんから、毒があったとしてもそれほど注意が必要なわけでもありません。また、アフリカ大陸原産種のP. bispinosumやP. succulentumあたりは枝を剪定しながら育てますが、ユーフォルビアのように、切り口から乳液があふれ出るわけでもないため、それほど神経質にならなくても問題なさそうです。

パキポディウムの毒に関する論文
さて、そんな毒があるパキポディウムですが、どのような毒かは私も知りませんでした。しかし、調べてみるとパキポディウムの毒性について調べた論文を見つけました。それは、Anurag A. Agrawal, Aliya Ali, M. Daisy Johnson, Amy P. Hastings, Dylan Burge & Marjorie G. Weberの2017年の論文、『Toxicity of the spiny thick-foot Pachypodium』です。
この論文は意外性のある内容で、面白い試験をしています。というのも、例えば毒性のある乳液を出すユーフォルビアについて調べると、乳液の成分を分析した化学式や構造式が淡々と並ぶ論文が沢山あります。当然ながらこれらは科学的には重要で意味があるのでしょうけど、私には妙に味気無く感じてしまいます。それらに比べると、この論文はパキポディウムの種類によって毒性の強さに違いがあるのかとか、葉を食べるイモムシに対する毒性を見たりと中々変わったことをしています。というわけで、早速内容に移りましょう。

強心配糖体
ここで最初に用語の説明をします。パキポディウムの毒性を調べるために使用しているのがNa+/K+-ATPaseという酵素に対する反応です。このNa+/K+-ATPaseは、細胞の内外のナトリウムとカリウムの濃度を調整している酵素です。基本的に動物の細胞内にはカリウムが多く、細胞外の血液などにはナトリウムが多くなっています。この濃度の違い(濃度勾配)により、細胞外から細胞内へ、あるいは細胞内から細胞外への物質の輸送が行われます。つまり、このNa+/K+-ATPaseの働きを阻害してしまうことにより、動物に対して毒性が出るのです。具体的には強心配糖体と言って心臓にダメージが来る危険な毒です。

試験① パキポディウムの種類と毒の強さ
さて、このNa+/K+-ATPase(豚由来)に対する阻害を試験した結果、その毒性を5段階評価しています。この場合は数字が大きいほど、毒性が高いことになります。並びは遺伝子解析によるものです。

            ┏P. namaquanum
        ┏┫
        ┃┗P. bispinosum
    ┏┫ 
    ┃┃┏P. lealii
    ┃┗┫
    ┃    ┗P. saundersii
┏┫
┃┃    ┏P. ambongensis
┃┃┏┫
┃┃┃┃┏P. lamerei
┃┃┃┗┫
┃┗┫    ┗P. geayi
┃    ┃
┃    ┃┏P. rutenbergianum
┫    ┗┫
┃        ┗P. decaryi

┃    ┏P. windsorii
┃┏┫
┃┃┗P. baronii
┃┃
┗┫┏P. rosulatum 
    ┃┃       
ssp. rosulatum
    ┃┃        ┏P. inopinatum
    ┗┫    ┏┫
        ┃    ┃┗P. rosulatum ssp. bicolor
        ┃┏┫
        ┃┃┃┏P. horombense
        ┃┃┗┫
        ┗┫    ┃┏P. eburneum
            ┃    ┗┫
            ┃        ┗P. densiflorum
            ┃
            ┗P. rosulatum ssp. cactipes

以上の結果は中々面白いものです。上の4種類、P.namaquanum、P. bispinosum、P. lealii、P. saundersiiはアフリカ大陸の原産で毒性は高い傾向があります。次の5種類はマダガスカル島原産ですが、背が高くなるものが多くアフリカ大陸原産種に近縁です。これらはやはり毒性は高い傾向があります。赤い花を咲かせるP. baroniiとP. windsoriiは毒性が高い傾向があります。下の7種類はマダガスカル島原産で、背が低く幹が太ります。興味深いのは、分岐の根元に近いロスラツムやカクチペスは毒性が弱いのに、分岐先の1つであるイノピナツムは毒性が高まっていることです。一度弱毒となり再び強毒に進化するという奇妙なものですが、このような進化を誘うような要因が何かあるのでしょうか?

試験② オオカバマダラの幼虫の生長を阻害するか?
次に、オオカバマダラの幼虫にパキポディウムの葉の抽出物を食べさせる試験です。なんでこんなことをするのかを説明する前に、まずは背景をお話しましょう。
オオカバマダラは渡り鳥ならぬ渡りをする蝶として有名です。しかも、このオオカバマダラには毒があり、鳥ですら襲わない毒鳥です。オオカバマダラの幼虫は毒のあるトウワタ(Asclepias)の葉を食べて育ちます。そのため、オオカバマダラの体にはトウワタ由来の毒が蓄積しており、その毒でオオカバマダラは身を守っているのです。しかし、よく考えれば、オオカバマダラに毒があるのは、オオカバマダラにはトウワタの毒が効かないからでしょう。実はこのトウワタの毒はパキポディウムと同じくNa+/K+-ATPaseを阻害する強心配糖体です。もしかしたら、オオカバマダラにはパキポディウムの毒は効かないかもしれないのです。

結果として、オオカバマダラの幼虫はパキポディウムの葉(実際にはトウワタの葉に塗ったパキポディウムの葉の抽出物)を食べた量が多いほど、生長が阻害されることがわかりました。オオカバマダラにパキポディウムの毒が効いているように思えます。

試験③ オオカバマダラの酵素を阻害するか?
では、実際にどの程度、毒が効いているのか見てみましょう。最初の試験では使用したNa+/K+-ATPaseは豚由来でした。しかし、同時にオオカバマダラのNa+/K+-ATPaseの働きを阻害するのかも試験したのです。

さて、結果ですが、なんとオオカバマダラの
Na+/K+-ATPaseは、豚由来のNa+/K+-ATPaseと比べると約100倍もトウワタの毒に対して耐性があることがわかりました。オオカバマダラは酵素からしてトウワタの毒が効かなくなっているのです。では、パキポディウムの毒ではどうかというと、オオカバマダラのNa+/K+-ATPaseも豚由来のNa+/K+-ATPaseも、効果に差がありませんでした。つまりは、オオカバマダラはパキポディウムの毒には耐性がないということになります。

最後に
読めばお分かりのように、同じ強心配糖体とはいえ、トウワタとパキポディウムでは毒の成分は異なるのでしょう。とするなら、オオカバマダラにパキポディウムの毒が効くのは当たり前の話でしょう。一口にNa+/K+-ATPaseの働きを阻害すると言っても、どのように阻害するかは物質により異なる可能性が大です。さらに言えば、実際にパキポディウムの葉を食べるイモムシもいるということですから、一概にトウワタよりもパキポディウムの方が毒性が高いとも断言出来ません。パキポディウムの葉を食べるイモムシにトウワタの葉を食べさせたら、結構毒が効いてしまうかもしれません。
というように、非常に面白い研究ではありますが、結果ははっきりしないものでした。しかし、パキポディウムには強烈な毒性があることと、Na+/K+-ATPaseの阻害作用が明らかになりました。しかも、パキポディウムの種類により毒性も異なるのです。しかし、この差は何が原因でしょうか? 非常に気になります。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

 昨日に引き続きエケベリアの遺伝子を解析した論文の紹介です。本日が最後です。

エケベリアとセダムなどの遺伝子を解析した結果を以下に示します。それによると、エケベリアは大きく4つに分けられることがわかりました。下の系統図の太字で示したClade I~Clade IVです。

┏━━━━━━━━Lenophyllum acutifolium

┃                                ┏Sedum palmeri
┃                    ┏━━┫
┃                    ┃        ┗Sedum frutescens
┣━━━━━┫
┃                    ┃┏━━Sedum compactum
┃                    ┗┫
┫                        ┃┏━Sedum allantoides
┃                        ┗┫
┃                            ┃┏Villadia cucullata
┃                            ┗┫
┃                                ┗Villadia albiflora

┃┏━━━━━━━━Sedum dendroideum
┗┫
    ┃┏━━━━━━━Clade I
    ┗┫
        ┃┏━━━━━━Clade II
        ┗┫
            ┃┏━━━━━Sedum corynephyllum
            ┗┫
                ┃┏━━━━Clade III 
                ┗┫
                    ┃            ┏Clade IV-①
                    ┗━━━┫
                                    ┗Clade IV-②

_20230109_223316
Clade IV-②はエケベリアのみからなるグループです。series Gibbiflorae、つまりはエケベリア属ギビフロラエ列です。ギビフロラエ列は2つのグループに大別されます。

                            ┏━E. gibbiflora 1
┏━━━━━━┫
┃                        ┃┏E. fulgens 
┃                        ┗┫    v. obtusifolia
┃                            ┗E. gibbiflora 2

┫┏━━━━━━━E. purhepecha
┃┃
┃┃                        ┏E. roseiflora
┃┃                    ┏┫
┃┃                    ┃┗E. nayaritensis
┗┫┏━━━━┫
    ┃┃                ┃┏E. munizii
    ┃┃                ┗┫
    ┃┃                    ┗E. rufiana
    ┃┃
    ┃┃    ┏━━━━E. dactylifera
    ┃┃┏┫
    ┗┫┃┃┏━━━E. michihuacana 1
        ┃┃┗┫
        ┃┃    ┃        ┏E. michihuacana 2
        ┃┃    ┃┏━┫
        ┃┃    ┃┃    ┗E. michihuacana 3
        ┃┃    ┗┫
        ┃┃        ┃┏━E. michihuacana 4
        ┗┫        ┗┫
            ┃            ┃┏E. michihuacana 5
            ┃            ┗┫
            ┃                ┗E. michihuacana 6
            ┃
            ┃┏━━━━E. cante
            ┃┃
            ┃┃        ┏━E. subrigida
            ┗┫┏━┫
                ┃┃    ┃┏E. novogaliciana
                ┃┃    ┗┫
                ┗┫        ┗E. perezcalixii
                    ┃
                    ┃┏━━E. cerrograndensis
                    ┗┫
                        ┃┏━E. sp.
                        ┗┫
                            ┃┏E. marianae
                            ┗┫
                                ┗E. patriotica

                        ┏E. uxorium
┏━━━━━┫
┃                    ┗E. acutifolia

┃                    ┏E. fulgens v. fulgens
┃┏━━━━┫
┃┃                ┗E. guerrerensis
┫┃
┃┃            ┏━E. aff. acutifolia 1
┃┃┏━━┫
┃┃┃        ┃┏E. aff. gigantea
┃┃┃        ┗┫
┗┫┃            ┗E. aff. acutifolia 2
    ┃┃
    ┃┣━━━━E. fulgens
    ┃┃
    ┃┣━━━━E. aff. gibbiflora
    ┃┃
    ┗┫            ┏E. fimbriata 1
        ┣━━━┫
        ┃            ┗E. fimbriata 2
        ┃
        ┣━━━━E. rubromarginata 1
        ┃
        ┃┏━━━E. sp.
        ┃┃
        ┃┃        ┏E. triquiana
        ┃┃┏━┫
        ┃┃┃    ┗E. gigantea
        ┗┫┃
            ┃┣━━E. longiflora
            ┃┃
            ┃┃    ┏E. aff. fulgens 1
            ┃┣━┫
            ┗┫    ┗E. grisea
                ┃
                ┣━━E. crenulata
                ┃
                ┣━━E. rubromarginata 2
                ┃
                ┃┏━E. aff. gibbifor
                ┗┫
                    ┃┏E. prunina
                    ┗┫
                        ┗E. aff. fulgens 2

この4日間に渡る記事の総括は、エケベリア属は単系統ではないということです。複数の系統が入り交じる雑多な寄せ集めと言えます。この状態の解決策は2つあります。1つは、すべてをセダム属としてしまうことです。エケベリアもグラプトペタルムもクレムノフィラもトンプソネラも廃止してしまうのです。おそらく、これが最も簡単かつ分類学的に正しい方法です。もう1つは、グラプトペタルムやクレムノフィラなどを廃止してエケベリアに含んでしまうというものです。この場合、エケベリアは遺伝的には広義セダムの一部ですから、エケベリアを残したい場合にはセダムを細かく分割する必要性が生じてしまいます。あまり現実的ではない提案でしょう。とは言うものの、まだ公的なデータベース上においては旧来の分類方法のままです。どうも、ここ十年くらいでセダムやエケベリアを含むベンケイソウ科植物の遺伝子解析が急激に進行しています。分類体系の再検討はこれからでしょう。かなりホットな話題ですから、これからのことの推移を注視していきたいと思います。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

昨日に引き続きエケベリアの遺伝子を解析した論文の紹介です。Clade I、Clade II、Clade IIIの詳細をお示ししました。本日はClade IV-①です。

エケベリアとセダムなどの遺伝子を解析した結果を以下に示します。それによると、エケベリアは大きく4つに分けられることがわかりました。下の系統図の太字で示したClade I~Clade IVです。

┏━━━━━━━━Lenophyllum acutifolium

┃                                ┏Sedum palmeri
┃                    ┏━━┫
┃                    ┃        ┗Sedum frutescens
┣━━━━━┫
┃                    ┃┏━━Sedum compactum
┃                    ┗┫
┫                        ┃┏━Sedum allantoides
┃                        ┗┫
┃                            ┃┏Villadia cucullata
┃                            ┗┫
┃                                ┗Villadia albiflora

┃┏━━━━━━━━Sedum dendroideum
┗┫
    ┃┏━━━━━━━Clade I
    ┗┫
        ┃┏━━━━━━Clade II
        ┗┫
            ┃┏━━━━━Sedum corynephyllum
            ┗┫
                ┃┏━━━━Clade III 
                ┗┫
                    ┃            ┏Clade IV-①
                    ┗━━━┫
                                    ┗Clade IV-②

_20230109_223219
Clade IVは調査された種類が多いため、2つに分けます。Clade IV-①はEcheveria、Graptopetalum、Sedum、Cremnophila、Reidmorania、Tacitusを含む雑多なクレードです。便宜上、4つのグループに分けました。

┏━━━━①Graptopetalum-1

┃┏━━━②Graptopetalum-2
┃┃
┗┫┏━━③Cremnophila
    ┃┃
    ┗┫┏━④Echeveria
        ┗┫
            ┗━Clade IV-②

①Graptopetalum-1
エケベリアとグラプトペタルムが混雑しており、グラプトペタルムはまとまりのあるグループではないことがわかります。これらは将来的に吸収されて消滅するでしょう。ちなみに、現在G. mendozaeとG. craigiiはセダムとされています。現在、Reidmoraniaはエケベリアに、Tacitusはグラプトペタルムに吸収されてしまいました。

┏━━━━G. mendozae

┣━━━━G. amethystinum

┃        ┏━G. craigii
┣━━┫
┃        ┃┏E. craigiana
┃        ┗┫
┃            ┗E. affinis

┃        ┏━G. grande
┣━━┫
┃        ┃┏G. paraguayense
┃        ┗┫
┃            ┗G. bernalense

┃            ┏R. occidentalis
┃┏━━┫
┃┃        ┗G. pachyphyllum
┃┃
┃┃    ┏━G. bartramii
┣┫┏┫
┃┃┃┃┏G. suaveolens
┃┃┃┗┫
┃┃┃    ┗T. bellus
┃┗┫
┃    ┃    ┏E. valvata
┃    ┃┏┫
┃    ┃┃┗E. calycosa
┃    ┗┫
┃        ┃┏G. saxifragoides
┃        ┗┫
┃            ┗G. pusillum

┃            ┏E. amoena
┣━━━┫
┃            ┗E. microcalyx

┃┏━━━②Graptopetalum-2
┃┃
┗┫┏━━③Cremnophila
    ┃┃
    ┗┫┏━④Echeveria
        ┗┫
            ┗━Clade IV-②


②Graptopetalum-2
③Cremnophila
ここではグラマトペタルムはまとまったグループとなっていますが、セダムが混入しています。クレムノフィラはよくまとまったグループですが、やはりエケベリアやセダムと入れ子状となっています。

┏━━━━━①Graptopetalum-1

┃                ┏G. fruticosum
┃    ┏━━┫
┃    ┃        ┗G. marginatum
┃    ┃
┃    ┃        ┏G. rusbyi
┃    ┣━━┫
┃    ┃        ┗G. filiferum
┃    ┃
┫┏┫        ┏G. macdougallii
┃┃┣━━┫
┃┃┃        ┗S. clavatum
┃┃┃
┃┃┃        ┏G. glassii
┃┃┃    ┏┫
┃┃┃    ┃┗G. pentandrum
┃┃┗━┫
┃┃        ┃┏G. superbum 1
┃┃        ┗┫
┃┃            ┗G. superbum 2
┗┫

    ┃        ┏━C. linguifolia 1
    ┃    ┏┫
    ┃    ┃┃┏C. linguifolia 2
    ┃    ┃┗┫
    ┃    ┃    ┗C. linguifolia 3
    ┃┏┫
    ┃┃┃┏━C. nutans 1
    ┃┃┗┫
    ┃┃    ┃┏C. nutans 2
    ┃┃    ┗┫
    ┗┫        ┗C. nutans 3
        ┃

        ┃        ┏E. humilis
        ┃┏━┫
        ┃┃    ┗E. xichuensis
        ┗┫
            ┃┏━E. trianthina
            ┗┫
                ┃┏④Echeveria
                ┗┫
                    ┗Clade IV-②


④Echeveria
ここではエケベリアがまとまっています。

┏━━━━━━━━━━━E. peacockii

┃┏━━━━━━━━━━E. subalpina
┗┫
    ┃┏━━━━━━━━━E. laui
    ┗┫
        ┃                                ┏E. semivestita 
        ┃                            ┏┫ v. semivestita
        ┃                            ┃┗E. semivestita 
        ┃┏━━━━━━┫     v. floresiana
        ┃┃                        ┃┏E. tamaulipana
        ┃┃                        ┗┫
        ┃┃                            ┗E. runyonii
        ┗┫
            ┃                            ┏E. aff. secunda 1
            ┃┏━━━━━━┫
            ┃┃                        ┗E. aff. secunda 2
            ┃┃
            ┃┃                    ┏━E. minima
            ┗┫┏━━━━┫
                ┃┃                ┃┏E. secunda
                ┃┃                ┗┫
                ┃┃                    ┗E. aff. secunda 3
                ┗┫
                    ┃┏━━━━━E. strictiflora
                    ┃┃
                    ┃┣━━━━━E. shaviana 1
                    ┃┃
                    ┗┫                ┏E. calderoniae
                        ┣━━━━┫
                        ┃                ┗E. shaviana 2
                        ┃
                        ┃┏━━━━E. lutea
                        ┗┫
                            ┃┏━━━E. bifida
                            ┗┫
                                ┃┏━━E. lyonsii
                                ┗┫
                                    ┃┏━E. bifurcata
                                    ┗┫
                                        ┃┏E. rodolfi
                                        ┗┫
                                            ┗E. aff. rodolfi


Clade IV-①は、エケベリア、グラマトペタルム、クレムノフィラ、セダムを含みます。グラマトペタルムはまったくまとまりがありません。Graptopetalum-2はよくまとまっていますが、セダムを含んでいます。Graptopetalum-1はエケベリアが混在しており、グラプトペタルム属の存在自体に疑問符がつきます。
明日に続きます。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

昨日から引き続きまして、エケベリアの遺伝子解析による分類をお示ししています。昨日はClade IとClade IIの詳細をお示ししました。本日はClade IIIです。

エケベリアとセダムなどの遺伝子を解析した結果を以下に示します。それによると、エケベリアは大きく4つに分けられることがわかりました。下の系統図の太字で示したClade I~Clade IVです。


┏━━━━━━━━Lenophyllum acutifolium

┃                                ┏Sedum palmeri
┃                    ┏━━┫
┃                    ┃        ┗Sedum frutescens
┣━━━━━┫
┃                    ┃┏━━Sedum compactum
┃                    ┗┫
┫                        ┃┏━Sedum allantoides
┃                        ┗┫
┃                            ┃┏Villadia cucullata
┃                            ┗┫
┃                                ┗Villadia albiflora

┃┏━━━━━━━━Sedum dendroideum
┗┫
    ┃┏━━━━━━━Clade I
    ┗┫
        ┃┏━━━━━━Clade II
        ┗┫
            ┃┏━━━━━Sedum corynephyllum
            ┗┫
                ┃┏━━━━Clade III 
                ┗┫
                    ┃            ┏Clade IV-①
                    ┗━━━┫
                                    ┗Clade IV-②

_20230109_222553
Clade IIIはThompsonellaを含みます。4つのグループに分けられます。それぞれのグループの詳細を見ると、①Echeveria-1と④Echeveria-4はエケベリアのみからなります。しかし、③Thompsonellaはエケベリアとトンプソネラが混じっています。トンプソネラと近縁なエケベリアをトンプソネラに含めてしまうか、トンプソネラを廃止してエケベリアに含めてしまうか、あるいはエケベリアもトンプソネラも廃止してしまいすべてセダムにするか、3つの選択肢があります。また、②Echeveria-2にはPachyphytum cuicatecanumが含まれます。これは流石にパキフィツムから除外すべきでしょう。

┏━①Echeveria-1

┫┏②Echeveria-2
┃┃
┗╋③Thompsonella
    ┃
    ┗④Echeveria-3


①Echeveria-1

                            ┏E. corynephyllum
┏━━━━━━┫
┃                        ┗E. rosea

┫                        ┏E. chiapensis
┃┏━━━━━┫
┃┃                    ┗E. nuda
┗┫
    ┃┏━━━━━E. nebularum
    ┗┫
        ┃┏━━━━E. globulosa
        ┗┫
            ┃┏━━━E. subcorymbosa
            ┗┫
                ┃┏━━E. megacalyx
                ┗┫
                    ┃┏━E. mondragoniana
                    ┗┫
                        ┃┏E. chazaroi
                        ┗┫
                            ┗E. helmutiana

②Echeveria-2

                            ┏E. rorzaniana
┏━━━━━━┫
┃                        ┗E. carminea

┃    ┏━━━━━E. racemosa
┃    ┃
┃    ┃                ┏E. pinetorum
┃    ┣━━━━┫
┃┏┫                ┗E. mucronata
┃┃┃
┃┃┣━━━━━E. olivacea
┃┃┃
┃┃┃┏━━━━E. penduliflora
┃┃┗┫
┃┃    ┃┏━━━P. cuicatecanum
┃┃    ┗┫
┃┃        ┃┏━━E. alata
┃┃        ┗┫
┗┫            ┃┏━E. viridissima
    ┃            ┗┫
    ┃                ┃┏E. globuliflora
    ┃                ┗┫
    ┃                    ┗E. macdougalii
    ┃
    ┃        ┏━━━E. lurida
    ┃┏━┫
    ┃┃    ┃┏━━E. diffractens
    ┃┃    ┗┫
    ┃┃        ┃┏━E. carnicolor
    ┃┃        ┗┫
    ┃┃            ┃┏E. tencho
    ┃┃            ┗┫
    ┃┃                ┗E. canaliculata
    ┗┫
        ┃        ┏━━E. goldmanii
        ┃┏━┫
        ┃┃    ┃┏━E. aff. bella
        ┃┃    ┗┫
        ┃┃        ┃┏E. bella aff. major
        ┗┫        ┗┫
            ┃            ┗E. sessiliflora
            ┃
            ┃┏━━━E. heterosepata
            ┗┫
                ┃┏━━E. crassicaulis
                ┗┫
                    ┃┏━E. platyphylla
                    ┗┫
                        ┃┏E. longipes
                        ┗┫
                            ┗E. paniculata
                                     v. maculata

③Thompsonella

                    ┏━E. moranii
┏━━━━┫
┃                ┃┏E. pringlei v. parva
┃                ┗┫
┃                    ┗E. pringlei

┃                    ┏T. mixtecana 1
┃┏━━━━┫
┃┃                ┗T. mixtecana 2
┗┫
    ┃            ┏━T. minutiflora 1
    ┃┏━━┫
    ┃┃        ┃┏T. xochipalensis
    ┃┃        ┗┫
    ┃┃            ┗T. minutiflora 2
    ┗┫
        ┃┏━━━T. platyphylla
        ┗┫
            ┃┏━━T. colliculosa
            ┗┫
                ┃┏━T. garcia-mendozae
                ┗┫
                    ┃┏T. spathulata 1
                    ┗┫
                        ┗T. spathulata 2

④Echeveria-3

                    ┏E. setosa v. ciliata
┏━━━━┫
┃                ┃┏E. coccinea 1
┃                ┗┫
┃                    ┗E. coccinea 2

┃                    ┏E. montana
┃    ┏━━━┫
┃    ┃            ┗E. aff. longissima
┫┏┫
┃┃┃┏━━━E. chapalensis
┃┃┗┫
┃┃    ┃┏━━E. derenbergii
┃┃    ┗┫
┃┃        ┃┏━E. gracilis
┃┃        ┗┫
┃┃            ┃┏E. pulvinata 1
┗┫            ┗┫
    ┃                ┗E. pulvinata 2
    ┃
    ┃            ┏━E. amphoralis
    ┃        ┏┫
    ┃        ┃┗━E. sp.
    ┣━━┫
    ┃        ┃┏━E. uhlii
    ┃        ┗┫
    ┃            ┃┏E. setosa v. deminuta
    ┃            ┗┫
    ┃                ┗E. setosa
    ┃
    ┃┏━━━━E. multicaulis
    ┗┫
        ┃┏━━━E. brachetii
        ┗┫
            ┃┏━━E. aff. setosa
            ┗┫
                ┃┏━E. purpusorum
                ┗┫
                    ┃┏E. longissima 
                    ┗┫     v. aztatlensis
                        ┗E. longissima
                                 v. brachyantha


エケベリアの中に埋もれているPachyphytum corynephyllumは、初めはエケベリアとして命名されました。現在はパキフィツムですが、エケベリアとした方が正しいのでしょう。また、Thompsonellaは未だに現在です。Thompsonellaには妥当性がないように思われます。ここいらへんも、将来整理されるかもしれません。
明日に続きます。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

かつて、というか去年の12月初めに珍しくエケベリアについての記事を書きました。実はエケベリアについて調べていたわけではなく、庭に野良セダムが生えてきたのでセダムSedumについて調べていたのです。しかし、見つけた論文のタイトルは"Linnaeus's folly"、「リンネの愚かさ」という大胆なもので、内容もエケベリアがセダムに吸収されてしまうという衝撃的なものでした。その論文の紹介記事はこちらをご一読下さい。
さて、とは言うものの、論文はセダムを広く解析したもので、エケベリアは少し調べただけでした。そこで、エケベリアについてもっと詳細に調べた論文はないかと調べていたところ、参考になりそうな論文を見つけました。2019年の論文、『Phylogenetics relationships of Echeveria (Crassulaceae) and related genera from Mexico, based on DNA barcoding loci』です。非常に長い論文で、詳細を書いていると大変な長さになりますから、実際の遺伝子解析結果のみを示します。
まずは、エケベリアとセダムなどの遺伝子を解析した結果を以下に示します。それによると、エケベリアは大きく4つに分けられることがわかりました。下の系統図の太字で示したClade I~Clade IVです。VilladiaがSedumに含まれてしまうなど、以前ご紹介した論文と傾向は同じです。そして、Clade IIとClade IIIの間に
Sedum corynephyllumが入るなど、エケベリアにはまとまりがありません。

┏━━━━━━━━Lenophyllum acutifolium

┃                                ┏Sedum palmeri
┃                    ┏━━┫
┃                    ┃        ┗Sedum frutescens
┣━━━━━┫
┃                    ┃┏━━Sedum compactum
┃                    ┗┫
┫                        ┃┏━Sedum allantoides
┃                        ┗┫
┃                            ┃┏Villadia cucullata
┃                            ┗┫
┃                                ┗Villadia albiflora

┃┏━━━━━━━━Sedum dendroideum
┗┫
    ┃┏━━━━━━━Clade I
    ┗┫
        ┃┏━━━━━━Clade II
        ┗┫
            ┃┏━━━━━Sedum corynephyllum
            ┗┫
                ┃┏━━━━Clade III 
                ┗┫
                    ┃            ┏Clade IV-①
                    ┗━━━┫
                                    ┗Clade IV-②


_20230109_221046
では、各クレードの詳細を見ていきましょう。Clade Iはパキフィツム(Pachyphytum)です。詳しくはわかりませんが、この論文ではパキフィツムはエケベリアの一部をなすと考えているようです。パキフィツムは非常にまとまりのあるグループですが、残念ながらこの論文では分離が悪く、種同士の関係性は不明です。横並びの18種類は、本来なら遠近があるはずですが、解析が上手くいかなかったようです。

    ┏P. fittkaui
┏┫
┃┗P. kimnachii

┃┏P. compactum
┃┣P. brevifolium
┫┣P. viride
┃┣P. brachetii
┃┣P. glutinicaule
┃┣P. sp.
┃┣P. rzedowskii
┃┣P. viride
┗╋P. hookeri
    ┣P. oviferum
    ┣P. bracteosum
    ┣P. longifolium
    ┣P. caesium
    ┣P. werdermannii
    ┣P. machucae
    ┣P. contrerasii
    ┣P. saltense
    ┗P. garciae

_20230109_222317
次はClade IIです。Clade IIはすべてエケベリアからなります。Series Urbiniaeとありますが、属の下の分類でウルビニア列です。著者はこのウルビニア列をエケベリアからの独立を提案しているようです。しかし、やはりセダムが入れ子状に混じりますから、中々難しいところです。解決策は非常に細分化して新しい属を作りまくるか、すべてをセダムとしてしまうかです。

        ┏━━━E. cuspidata var. cuspidata
    ┏┫
    ┃┗━━━E. cuspidata var. zaragozae
┏┫
┃┃┏━━━E. chihuahuensis
┃┗┫
┃    ┃┏━━E. lilacina
┃    ┗┫
┃        ┗━━E. unguiculata

┃    ┏━━━E. pulidonis
┃┏┫
┫┃┃┏━━E. elegans
┃┃┗┫
┃┃    ┃┏━E. potosina
┃┃    ┗┫
┃┃        ┃┏E. halbingeri var. halbingeri
┃┃        ┗┫
┃┃            ┗E. simulns
┗┫
    ┃    ┏━━E. juliana
    ┃┏┫
    ┃┃┃┏━E. tobarensis
    ┃┃┗┫
    ┃┃    ┗━E. turgida
    ┗┫
        ┃┏━━E. tolimanensis
        ┗┫
            ┃┏━E. agavoides
            ┗┫
                ┃┏E. colorata f. colorata
                ┗┫
                    ┗E. colorata


現在の学術的なデータベースではどうなっているでしょうか? イギリスのキュー王立植物園のデータベースでは、Villadia、Pachyphytumはまだ健在です。立ち位置の怪しいSedum corynephyllumもそのままです。ただし、Urbiniaeはエケベリアの異名扱いで正式に認められた属ではありません。今後、このあたりはダイナミックに変わる可能性があります。
続きます。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

以前から思っていたこととして、ノリナ属(Nolina)、カリバヌス属(Calibanus)、トックリラン属(Beaucarnea)はよく似ているということです。この3属の関係はどうなっているのでしょうか? というのも、ネットで調べるとNolina(=Beaucarnea)などと書かれており、何が正しいのか良くわからなくなったからです。
わからなくなら調べれば良いということで早速調べてみたところ、ちょうど良い論文が見つかりました。Vanessa Rojas-Pina, Mark E. Olson, Leonardo O. Alvarado-Cardenas & Luis E. Eguiarteの2014年の論文、『Molecular phylogenetics and morphology of Beaucarnea (Ruscaceae) as distinct from Nolina, and the submersion of Calibanus into Beaucarnea』です。

実は学術的にもトックリラン属Beaucarneaはあいまいな存在です。研究者によってはBeaucarneaはNolinaの異名とみなしています。しかし、まったく別の属であるとも言われます。さらに、BeaucarneaとCalibanusの関係もはっきりとはしていませんでした。
Beaucarneaは7種のメキシコ固有種があり、その他の3種は中央アメリカまで分布します(※2014年当時)。Beaucarneaは園芸用として19世紀半ばにヨーロッパへ導入されました。現在では世界中で栽培されています。しかし、園芸用途の長い歴史にも関わらず、系統関係の研究はなされていません。

以下に遺伝子解析による分子系統を示します。①~⑥のクレードがBeaucarneaです。ここでは6グループに分けられることを示しています。このBeaucarneaとDasylirionは姉妹群です。ご覧の通りNolinaはBeaucarneaと近縁ではあっても、BeaucarneaがNolinaに含まれるという考え方は否定されます。

                        ┏①recurvata clade
                    ┏┫
                    ┃┗②gracilis clade
                ┏┫
                ┃┗③calibanus clade
            ┏┫
            ┃┗④purpusii clade
        ┏┫
        ┃┗⑤stricta clade
    ┏┫
    ┃┗⑥southern clade
    ┃
┏┫┏━Dasylirion acrotriche
┃┃┃
┃┃┣━━Dasylirion serratifolium
┃┗┫
┃    ┃┏━Dasylirion berlandieri
┃    ┃┃
┃    ┗╋━Dasylirion longissimum
┃        ┃
┃        ┗Dasylirion glaucophyllum

┃    ┏━━Nolina parviflora
┃    ┃
┃┏┫    ┏━━Nolina longifolia
┃┃┗━┫
┃┃        ┗Nolina cespitifera
┗┫
    ┃                    ┏━━Nolina duranguensis
    ┃    ┏━━━┫
    ┃    ┃            ┗Nolina juncea
    ┗━┫
            ┗━━━Nolina lindheimeriana


では、次にBeaucarneaの①~③の3つのクレードを見てみましょう。驚くべきことにCalibanusはBeaucarneaと区別することが出来ません。Calibanus glassianusはBeaucarnea compactaと非常に近縁です。しかも、③Calibanusは①+②と④のBeaucarneaに挟まれてしまっています。このように入れ子状ではCalibanusを独立した属とみなすことは困難です。もし、Calibanusを維持しようとするならば、Beaucarneaの他の5つのクレードもそれぞれ別の属として独立させる必要があります。しかし、一番簡単なのは、CalibanusをBeaucarneaに含めてしまうことです。

                  ①recurvata clade
        ┏━━Beaucarnea recurvata
    ┏┫
    ┃┃┏Beaucarnea sp1
    ┃┗┫
    ┃    ┗Beaucarnea sanctomariana
    ┃         ②gracilis clade
    ┃    ┏Beaucarnea gracilis 1
┏┫    ┃
┃┃    ┣Beaucarnea gracilis 2
┃┃┏┫
┃┃┃┗Beaucarnea gracilis 3
┃┗┫
┃    ┗Beaucarnea gracilis 4
            ③ calibanus clade
┃    ┏Beaucarnea compacta 1
┫    ┃
┃    ┣Beaucarnea compacta 2
┃    ┃
┃    ┣Beaucarnea compacta 3
┃┏┫
┃┃┣Calibanus glassianus 1
┃┃┃
┃┃┣Calibanus glassianus 2
┗┫┃
    ┃┗Calibanus glassianus 3
    ┃
    ┃┏━Calibanus hookeri 1
    ┗┫
        ┃┏Calibanus hookeri 2
        ┗┫
            ┗Calibanus hookeri 3

次に④~⑥のクレードです。非常に綺麗に分かれています。著者のBeaucarneaを6つのグループに分ける提案は正しいでしょう。また、B. purpusiiはB. strictaの異名とする意見も幾つかの植物のデータベースでは見られますが、クレードレベルで異なることが明らかになりました。つまりは、B. purpusiiは独立種であり、B. strictaとは別種です。

                ┏①recurvata clade
            ┏┫
            ┃┗②gracilis clade
        ┏┫
        ┃┗③calibanus clade
        ┃
        ┃        ④purpusii clade
        ┃    ┏Beaucarnea sp2
    ┏┫┏┫
    ┃┃┃┗Beaucarnea sp2
    ┃┃┃
    ┃┗┫            ┏Beaucarnea hiriartiae 1
    ┃    ┃    ┏━┫
    ┃    ┃    ┃    ┗Beaucarnea hiriartiae 2
┏┫    ┗━┫
┃┃            ┃┏Beaucarnea purpusii 1
┃┃            ┗┫
┃┃                ┗Beaucarnea purpusii 2
┃┃             ⑤stricta clade
┃┃┏Beaucarnea stricta 1
┃┗┫
┃    ┃┏━Beaucarnea stricta 2
┃    ┗┫
┃        ┗Beaucarnea stricta 3
┃                ⑥southern clade
┃                    ┏Beaucarnea goldmanii 1
┃                ┏┫
┃                ┃┗Beaucarnea goldmanii 2
┃            ┏┫
┃            ┃┃┏Beaucarnea guatemalensis
┃            ┃┗┫
┗━━━┫    ┗Beaucarnea pliabilis
                ┃
                ┗Beaucarnea goldmanii 3


Beaucarneaは乾燥地域に分布するものと湿潤地域に分布するものがあります。①recurvata cladeと⑥southern cladeは割と湿潤な環境に自生します。この2つのクレードは遺伝的には近縁ではありませんが、形態学的特徴は共有しています。これは、環境に適応するために収斂した可能性があります。例えば、細い茎と枝、滑らかな樹皮、葉の形、浅く沈んだ気孔、無毛の葉などがあげられます。残りの4クレードは、乾生低木林や熱帯落葉樹林などの乾燥地に生えます。4つのクレードの共通する特徴は、丈夫な茎と枝、厚くタイル状の樹皮、ほぼまっすぐな光沢のある葉、深く沈んだ気孔などです。これらの特徴は、長い乾季の間に水分損失を減らすためと考えられます。

以上が論文の簡単な要約となります。著者はCalibanusはBeaucarneaに含まれるとし、Calibanus glassianusをBeaucarnea glassianaに、Calibanus hookeriをBeaucarnea hookeriとすることを提案しています。しかし、なぜBeaucarneaをCalibanusにではなく、CalibanusをBeaucarneaになのでしょうか? これは、別にCalibanusがBeaucarneaに囲まれているからとか、Beaucarneaの方が種類が多いからではありません。国際命名規約にある、先に命名された学名を優先するという「先取権の原理」に従っているだけです。Beaucarnea属とCalibanus属の創設年は以外の通りです。
1861年 Beaucarnea Lem.
1906年 Calibanus Rose
Beaucarneaの方が40年以上前に命名されていますね。この事実によりCalibanusがBeaucarneaに吸収されるのです。ちなみに、現在キュー王立植物園のデータベースではCalibanusはBeaucarneaの異名とされており、日本でも昔から使用されてきたCalibanus属は消滅したことになります。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

亀甲竜は南アフリカ原産のヤマノイモの仲間です。ヤマノイモ?と思うかもしれませんが、亀甲竜の学名はDioscorea elephantipesで日本のヤマノイモはDioscorea  japonica、ナガイモはDioscorea D. polystachya(異名Dioscorea batatas)と同じヤマノイモ属です。みな、同じように蔓を伸ばし、非常に良く似た葉をつけます。違いは芋にコルク層が出来るか否かでしょう。さて、アフリカには亀甲竜以外のDioscoreaも分布しますが、それらの遺伝子を解析した論文を見つけました。Olivier Maurin, A. Muthama Muasya, Pilar Catalan, Eugene Z. Shongwe, Juan Viruel, Paul Wilkin & Michelle van der Bankの2016年の論文、『Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae) : erect habit and elephant's foot tubers』です。

Dioscoreaは熱帯域を中心に世界中に分布し、600種類以上あるとされています。Dioscoreaは芋(根茎・塊茎、perennating organs)を持ち、茎はツル性です。そのほとんどは雌雄異株で翼のある種子があります。単位面積あたりの種の多様性が高い地域は、ブラジル南部、メキシコの一部、大アンティル諸島、マダガスカル西部、中国南部からタイまでです。
過去の知見によると、Dioscoreaは10の主要cladeに分けられることが明らかになっています。この10の主要cladeのうち、3cladeはサハラ以南のアフリカに分布します。African cladeはアフリカでのみ多様化しており、13種類が知られています。そのうち、9種類が南アフリカの固有種です。
African cladeの特徴はその「象の足」のようなコルク層が発達した芋にあります。論文では"pachycaul"と表現しています。この"pachycaul"とはラテン語で"pachy + caulis"、つまりは「ずんぐりした + 茎」という意味の合成語です。要するに塊根・塊茎植物(caudex)のことを示しています。このpachycaul構造はメキシコ亀甲竜Dioscorea mexicanaなど新大陸でも希に見られます。

以下に世界各地の28種類のDioscoreaの遺伝子を解析した分子系統を示します。Stenophora cladeはヒマラヤからネパール、バングラデシュ、タイ、ベトナム、マレーシア原産のD. prazeri、New World clade IIはアルゼンチン、チリ原産のD. brachybotrya、New World clade IIはメキシコ原産のD. galeottiana、Mediterranean cladeはヨーロッパ、北アフリカ、トルコからイラン原産のD. communis、レバノン、シリア原産のD. orientalis、スペイン原産のD. chouardii、フランス、スペイン原産のD. pyrenaicaを調べています。Tamus edulisはD. communisとD. orientalisと近縁で、独立したTamus属ではなくDioscorea属に含まれることがわかりました。現在ではT. edulisはD. communisと同種とされており、Tamus属自体がDioscorea属に吸収されて存在しない属になりました。また、D. tentaculigeraは中国からタイに分布します。それ以外はアフリカ原産種です。

                ┏━━━African clade
                ┃
                ┃        ┏Compound Leaved clade
                ┃    ┏┫
            ┏┫    ┃┗Dioscorea sansibarensis
            ┃┃┏┫
            ┃┃┃┗━Enantiophyllum clade
            ┃┗┫
            ┃    ┗━━Dioscorea tentaculigera
        ┏┫
        ┃┗━━━━Mediterranean clade
    ┏┫
    ┃┗━━━━━New World clade II
┏┫
┃┗━━━━━━New World clade I

┗━━━━━━━Stenophora clade

①African clade
African cladeは4つのサブクレードに分けられます。
        ┏━Pachycaul subclade
    ┏┫
    ┃┗━Cape subclade
┏┫
┃┗━━East Africa subclade

┗━━━D. buchananii subclade

・Pachycaul subclade
このサブクレードは、5種類13個体を調べています。名前の通り、"pachycaul"構造を持つ主に南アフリカ原産のグループです。代表種は亀甲竜D. elephantipesで、非常に肥厚したコルク層がある芋があり、ひび割れてゴツゴツした姿になります。芋は形よく育ち、観賞用によく栽培されます。D. sylvaticaは葉裏が白く、表面が滑らかな芋があり観賞用に栽培されます。南アフリカからモザンビーク、スワジランド、ザンビア、ジンバブエ原産です。D. hemicryptaは表面がガサガサした不定形の芋があります。D. strydomianaは非常に肌が荒れたゴツゴツした芋があり、やや立ち上がって育ち樹木の幹のように見えます。
遺伝子を調べると、外見上は似ていて同種とされていたものの実は近縁ではないとか、外見上は違いがあり別種とされていたものの実は同種というパターンも珍しくありませんが、Dioscoreaは従来区分の種によるまとまりがあります。D. elephantipesとD. sylvatica、D. hemicryptaとD. strydomianaはそれぞれ姉妹群です。

                    ┏━D. elephantipes 1
            ┏━┫
            ┃    ┗━D. elephantipes 2
        ┏┫
        ┃┗━━━D. elephantipes 3
        ┃
    ┏┫        ┏━D. sylvatica 1
    ┃┃┏━┫
    ┃┃┃    ┗━D. sylvatica 2
    ┃┗┫
    ┃    ┗━━━D. sylvatica 3
    ┃
    ┃            ┏━D. hemicrypta 1
┏┫        ┏┫
┃┃        ┃┗━D. hemicrypta 2
┃┃    ┏┫
┃┃    ┃┗━━D. hemicrypta 3
┃┃┏┫
┃┃┃┗━━━D. hemicrypta 4
┫┗┫
┃    ┃        ┏━D. strydomiana 1
┃    ┗━━┫
┃                ┗━D. strydomiana 2

┗━━━━━━D. brownii

・Cape subclade
このサブクレードは南アフリカ原産です。D. burchelliiは2つの個体でやや遺伝的に距離があるようです。

            ┏━D. stipulosa 1
    ┏━┫
    ┃    ┗━D. stipulosa 2
    ┃
┏┫    ┏━D. mundii 1
┃┣━┫
┃┃    ┗━D. mundii 2
┫┃
┃┗━━━D. burchellii 1

┗━━━━D. burchellii 2

・East Africa subclade
このサブクレードは東アフリカ原産です。D. gillettiiはエチオピア、ケニア原産、D. kituiensisはケニア原産です。

        ┏━D. gillettii 1
┏━┫
┃    ┗━D. gillettii 2

┗━━━D. kituiensis

・D. burchellii subclade
このサブクレードは主に南アフリカ原産です。D. rupicolaは不定形の芋を持ちます。D. buchananiiは分布が広く、南アフリカ、アンゴラ、マラウイ、モザンビーク、タンザニア、ザンビア、ザイール、ジンバブエ原産です。"Bitter Yam"と呼ばれ食用とされます。

        ┏━D. multiloba
┏━┫
┃    ┗━D. rupicola

┗━━━D. burchellii


②Compound Leaves clade
このクレードは熱帯アフリカ原産のものと、アジア~オーストラリア原産のものがあります。D. dregeanaは南アフリカ、モザンビーク、スワジランド原産、D. dumetorumはチャド、コンゴ、赤道ギニア、エチオピア、ガボン、ガーナ、アンゴラ、ベナン、ブルキナファソ、ブルンジ、カメルーン、中央アフリカ、ギニア、ギニアビサウ原産です。D. bulbiferaはニガカシュウの名前で知られています。アフリカからアジア、オーストラリアまで広く分布します。

                ┏━D. dregeana 1
            ┏┫
            ┃┗━D. dregeana 2
        ┏┫
        ┃┗━━D. dregeana 3
    ┏┫
    ┃┗━━━D. dregeana 4
┏┫
┃┃        ┏━D. dumetorum 1
┫┗━━┫
┃            ┗━D. dumetorum 2

┗━━━━━D. bulbifera

③Enantiophyllum clade
このクレードはアフリカ原産です。D. cotinifoliaは南アフリカ、モザンビーク、スワジランド原産で、不定形な滑らかな表面を持つ芋があります。D. schimperianaはアフリカ大陸に広く分布します。

        ┏━D. cotinifolia 1
        ┃
┏━╋━D. cotinifolia 2
┃    ┃
┃    ┗━D. cotinifolia 3

┃    ┏━D. schimperiana 1
┗━┫
        ┗━D. schimperiana 2

African cladeは始新世に始まった旧世界のクレードの一部をなしています。漸新世の間、アフリカは湿潤で密な森林に覆われており、多年草の塊茎とわずかに翼があり滑空する種子が特徴です。中新世の気候変動により、アフリカ東部の草原と南アフリカの地中海性気候、及びケープ植物相が出現しました。乾燥した草原でおきる火事への適応で、コルク質の樹皮が発達したと考えられています。東アフリカでは種子に翼がなく、エライオソームがあることからアリにより運ばれる可能性があります。エライオソームとはアリに運んでもらうための種子についている栄養分で、アリはエライオソームがついた種子ごと巣穴に持ち込みます。アリの巣は地表より湿っていて涼しいので発芽に適しています。しかし、なぜ東アフリカでは風による種子の拡散ではなくなったのかは不明です。ただし、アリによる拡散は他の地域でもおきていることから、割とおきやすい変異なのかもしれません。

DSC_1923
亀甲竜 Dioscorea elephantipes

以上が論文の簡単な要約です。この論文は遺伝子解析結果から種の分岐年代を推定しています。ですから、アフリカにおけるDioscoreaの進化をかつての環境の変動と照らし合わせて、どのように進化したのかを推察しているのです。実は論文の内容は盛り沢山なのですが、様々な議論がされているため要約しきれませんでした。記事があまりにも長くなるためかなり割愛しています。内容が気になる方は、実際の論文を読んだ方が面白いかもしれませんね。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

アロイデンドロンは樹木状となるアロエの仲間です。代表種はかつてアロエ・ディコトマ(Aloe dichotoma)と呼ばれていたAloidendron dichotomumです。アロイデンドロン属は近年の遺伝子解析の結果によりアロエ属から分離されました。現在アロイデンドロン属は7種類あるとされています。その点についてはかつて記事にしたことがあります。ご参照下さい。
アロエ属とアロイデンドロン属の関係は遺伝子解析により判明していますが、アロイデンドロン属内の分類はわかっていませんでした。そんな中、アロイデンドロン属の遺伝子を解析して近縁関係を解明した論文を見つけました。Panagiota Malakasi, Sidonie Bellot, Richard Dee & Olwen Graceの2019年の論文、『Museomics Clarifies the Classification of Aloidendron (Asphodelaceae), the Iconic African Tree Aloe』です。

アロイデンドロン属はアフリカ南部の砂漠を象徴する植物です。しかし、アロイデンドロン属内の進化関係は不明でした。そこで、アロイデンドロン属を遺伝子解析することにより、属内の系統関係を類推しています。ここでは、Aloestrela suzannaeというアロエ類が出てきますが、お恥ずかしい話ですが私はこのアロエストレラ属の存在を知りませんでした。アロエストレラ属は2019年に創設されましたが、Aloestrela suzannaeだけの1属1種の属です。しかし、新種というわけではなく、1921年に命名されたAloe suzannaeが2019年にAloestrela suzannaeとなりました。

アロイデンドロン属の分子系統
┏━━━━━━Aloe
┃     (Aloidendron sabaeumを含む)


┃    ┏━━━━Aloidendron ramossimum
┃    ┃
┃┏┫         ┏━Aloidendron dichotomum 1
┃┃┃     ┏┫
┃┃┃     ┃┗━Aloidendron dichotomum 2
┃┃┃┏ ┫
┃┃┃┃ ┗━━Aloidendron pillansii 1
┃┃┗┫
┃┃    ┗━━━Aloidendron pillansii 2
┃┃
┗┫            ┏━Aloidendron barberae 1
    ┃        ┏┫
    ┃        ┃┗━Aloidendron barberae 2
    ┃   ? ┫
    ┃        ┗━━Aloidendron barberae 3
    ┃
    ┃    ┏━━━Aloestrela suzannae 1
    ┃┏┫
    ┃┃┗━━━Aloestrela suzannae 2
    ┗┫
        ┃┏━━━Aloidendron eminens 1
        ┗┫
            ┗━━━Aloidendron eminens 2


アロイデンドロン属の系統関係は、Aloidendron sabaeum以外はまとまりのあるグループでした。しかし、論文ではA. barberaeが、A. ramossimum系統なのかA. eminens系統なのかは不明瞭でした。さらに、Aloestrela suzannaeは独立したアロエストレラ属ではなくA. eminensと近縁であり完全にアロイデンドロン属に含まれてしまうことがわかりました。また、驚くべきことにA. sabaeumはアロエ属に含まれてしまい、アロイデンドロン属とは近縁ではないことが明らかとなりました。よって、今後アロエストレラ属は消滅してアロイデンドロン属となり、A. sabaeumはアロエ属に復帰するかもしれません。しかし、論文ではAloidendron tongaensisが調べられていないようです。今後の研究が待たれます。また、A. pillansiiは2個体調べていますが、この2個体は近縁ではあるもののやや遺伝的に距離があるようです。この点も注視していく必要がありそうです。

以上が論文の簡単な要約です。
しかし、私が知らない間に創設されたアロエストレラ属を知らない間に否定する論文が出ていたということで、己の無知を思い知るとともにアロエ類の研究が盛んに行われていることを嬉しく思います。また、A. sabaeumの遺伝子解析の結果からは、アロエが樹木状となること=アロイデンドロンではないということを示唆しています。アロエ属であっても環境に対する適応により樹木状の形態をとる可能性があるのでしょう。そうなると、樹木状とならないというか草本に回帰したアロイデンドロン属も存在するかもしれませんね。今後の研究結果が非常に楽しみになります。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

ダシリリオンの小さな実生苗を育てていますが、一体なんの仲間なのか以前から気になっていました。まあ、おそらくはリュウゼツランだのトックリランだのに近いのだろうとは感じていました。そこで、論文を調べてみたところ幾つか出てきたのですか、割と新しい論文がありましたので本日はそれをご紹介したいと思います。なぜ、新しい方が良いかというと、過去の知見を踏まえて試験されているということ以外にも理由があります。遺伝子を解析する分子生物学は新しい科学ですから、近年急激に進歩しています。90年代後半や2000年代前半くらいの論文は、精度が悪く信頼性が高くありません。というわけで、Ran Meng, Li-Ying Luo, Ji-Yuan Zhang, Dai-Gui Zhang, Ze-Long Nie & Ying Mengの2021年の論文、『The Deep Evolutionary Relationships of the Morphologically Heterogeneous Nolinoideae (Asparagaceae) Revealed by Transcriptome Data』をご紹介します。名前を見るに中国の研究者でしょうか? もしそうならば、今まで読んだ多肉植物の論文の中では、はじめてですね。なんだかんだで、多肉植物の論文は多肉植物先進国のヨーロッパとアメリカ、多肉植物の原産国であるメキシコや南アフリカあたりがほとんどのような気がします。

さて、現在の分類体系でキジカクシ科Asparagaceaeスズラン亜科Nolinoideaeに所属する植物は、形態学的に非常に不均一なグループで、かつては様々な科に分けられていました。あまりにも異なる見た目と、遺伝子解析の難しさから中々正しく理解されてきませんでした。この論文では調べた種類は少ないものの、逆に2126個もの遺伝子を調べることにより精度と解像度を上げることに成功しています。
このスズラン亜科の分類はかなり複雑な経緯をたどってきたようです。スズラン亜科は以前はRuscaceae sensu lato(広義)またはConvallariaceae sensu lato(広義)として知られていました。スズラン亜科は伝統的にEriospermaceae、Polygonateae、Ophiopogoneae、Convallarieae、Ruscaceae sensu stricto(狭義)、Dracaenaceae及びNolinaceaeとして知られる7つの異種系統で構成される複雑なグループでした。遺伝子解析の結果を以外に示します。

スズラン亜科の分子系統

                                    ┏Polygonatum
                                ┏┫      sibiricum
                                ┃┗Polygonatum
                            ┏┫       cyrtonema
                            ┃┗━Polygonatum
                        ┏┫        zanlanscianense
                        ┃┗━━Disporopsis
                    ┏┫               aspera
                    ┃┗━━━Maianthemum
                ┏┫                 japonicum
                ┃┃┏━━━Aspidistra
                ┃┗┫              fenghuangensis
                ┃    ┗━━━Tupistra chinensis
            ┏┫
            ┃┃┏━━━━Theropogon
            ┃┗┫                     pallidus
            ┃    ┗━━━Liriope platyphylla
        ┏┫
        ┃┃┏━━━Beaucarnea recurvata
        ┃┗┫
        ┃    ┗━━Dasylirion longissimum
    ┏┫
    ┃┗━━━━━━━Ruscus aculeatus
┏┫
┃┃┏━━━━━━Dracaena angustifolia
┃┗┫
┫    ┗━━━━━━━Sansevieria trifasciata

┗━Eriospermum lancifolium

遺伝子解析の結果から、6グループに分けられました。Eriospermumは比較のための外群です。
①Polygonateae
Polygonatum、Disporopsis、Mainthemumは近縁なグループです。Polygonatumとはいわゆるアマドコロ属で、ナルコユリが有名です。Mainthemumはマイヅルソウ属です。
Polygonataeは単系統でよくまとまった分類群ですが、Mainthemumはやや距離があるようです。

②Convallarieae
AspidistraとTupistraは姉妹群です。Aspidistraとはハラン属のことです。代表的なのはConvallaria、つまりはスズラン属です。
120430_173621
ドイツスズラン Convallaria majalis var. majalis

③Theropogon + Liriope
次にTheropogonとLiriopeは姉妹群です。Theropogonは東アジアに分布するスズラン様の草本です。Liriopeはいわゆるヤブラン属です。
Ophiopogoneae(ジャノヒゲ類)はConvallarieaeに含まれていましたが、実際の系統関係は不明でした。この論文ではTheropogonとLiriopeがOphiopogoneaeを代表しています。そして、遺伝子解析の結果では、OphiopogoneaeはPolygonateae + Convallarieaeに近縁であることが示されました。
DSC_2107
ヤブラン Liriope muscari

DSC_2106
ジャノヒゲ Ophiopogon japonicus

④nolinoides
BeaucarneaとDasylirionは姉妹群です。Beaucarneaはトックリラン属のことです。
nolinoidesは伝統的にはユリ科でしたが、その後ドラセナ科やトックリラン科とされました。Nolina、Dracaena、Yuccaは繊維状の葉と木質化する幹からリュウゼツラン科Agavaceaeとする考え方もあります。その花や果実や種子の特徴からは、Convallarieaeと近縁とされていました。しかし、遺伝子解析の計算方法の違いにより、Convallarieae-Dracaenaceae-Ruscaceae、あるいはAspidistreae-Convallarieaeに近縁とする2つの結果が得られています。この論文では、nolinoidesはruscoidsやdracaenoidsのような木質化するグループより、草本のConvallarieaeに近縁としています。
_20230103_091606
DSCPDC_0000_BURST20220503111716618
トックリラン Beaucarnea recurvata

DSC_0829
ダシリリオン

⑤ruscoids
Ruscusとはナギイカダ属のことです。
ruscoidsは伝統的にキジカクシ科と近縁と考えられてきましたが、遺伝子解析ではConvallarieaeと近縁でした。

⑥dracaenoids
DracaneaとSansevieriaは姉妹群です。実はSansevieriaはDracaenaに含まれるとする考え方が主流のようで、Sansevieria属は学術的には存在しません。どうも、2017~2018年頃に変更されたみたいです。論文が見つかれば記事にしたいですね。
dracaenoidsはユリ科、リュウゼツラン科、ドラセナ科、ナギイカダ科、スズラン科などに含まれたこともあり、系統関係はあやふやでした。しかし、特徴からはnolinoidesと近縁である可能性がありましたが、実際にはruscoidsと近縁でした。
09-02-10_06-32
ボウチトセラン Dracaena angolensis
                         (=Sansevieria cylindrica)


この論文の主眼は遺伝子解析の精度を高めることです。というのも、通常は2つの遺伝子を解析して系統関係を類推することが多いのですが、どうもスズラン亜科の過去の研究ではあまり高い精度を達成できていないみたいです。一応関係性は示されますが、精度が低いと信頼性も低いということになります。ですから、この論文では信頼性を高めることに成功したということです。しかし、dracaenoids、ruscoids、nolinoidesという木質化する各グループが、近縁であっても一つのグループにまとまっていないことがわかりました。さらなる詳細な研究が待たれます。

以上が論文の簡単な要約です。
この論文によりわかったこと、分類体系の確実性を増したことは確かでしょう。しかし、それは欠けたピースを少し埋めただけとも言えます。むしろこれからです。将来的な研究結果を楽しみにしています。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

ザミア・フルフラケア(Zamia furfuracea)はメキシコ原産のソテツの仲間です。日本でザミア・プミラ(Zamia pumila)の名前で販売されているのは、基本的にフルフラケアです。プミラとフルフラケアが混同されているのはおそらく日本だけで、海外の園芸サイトでは明確に別種とされています。まあ、実際のところそれほど似ているわけではないので、実際に見て間違うことはないでしょう。
DSC_1126
Zamia furfuracea(神代植物公園)
①葉の幅が広い、②葉の先端が丸い、③葉は皮質でぶ厚い、④黄色~褐色の短い毛がある、という特徴があればフルフラケアです。逆を言えば、プミラは葉の幅が狭く、葉の先端が尖り、葉は薄く、毛はないということになります。見分け方は簡単ですね。
DSC_1348
毛に被われたフルフラケアの新葉

さて、そんなフルフラケアですが、原産地のメキシコでは個体数の減少により絶滅が危惧されているそうです。そのあたりについて詳しく調べた2022年の論文、『Genetic diversity and differentiation in Zamia furfuracea (Zamiaceae) : an endangered, endemic and restricted Mexican Cycad』を本日はご紹介します。
Z. furfuraceaはメキシコ南東部の沿岸に固有のソテツで、生態的および園芸的に非常に重要です。主に牧畜地の拡大、都市開発、環境の悪化などにより減少しています。論文では6つの集団の遺伝子の多様性を確認しました。

Z. furfuraceaは世界の園芸市場で2番目に多く取引されているソテツです。そのため、違法採取にさらされてきました。さらに、開発なども影響し、過去40年で35%の減少を引き起こしました。なぜこのような調査を行う必要があるのかを説明しましょう。自生地の環境や個体数の調査は保護のための最低限の情報ですが、遺伝的多様性の調査は将来を見据えた研究と言えます。なぜなら、個体数の減少と個体群の分断が合わさると、遺伝的多様性が減少し様々な弊害が引き起こされる可能性があるからです。遺伝的多様性が失われると、やがて個体群の遺伝子が均一化してしまい、近親交配に近い状態となります。実際に野生のフルフラケアの実生の発芽率が低下している地域もあるという報告があります。
論文には述べられていませんでしたが、遺伝子が均一化してしまうと、その個体群が特定の病気に対して抵抗力がない場合、絶滅してしまいます。遺伝的多様性が豊富であれば、ある個体は病気に弱くても他の個体は抵抗性があれば問題はないわけです。実際に遺伝的に均一であったことで、危機に陥った有名な植物があります。それは、バナナです。種子ではなくて親株から出てくる子株で増やしているバナナは、遺伝的にクローンですから過去に病気の流行により壊滅的なダメージを受けてしまいました。現在我々が食べているバナナはその病気に対して耐性のある品種で、実は昔と異なる品種です。現在のバナナの品種は耐病性と輸送中の傷みにくさにより選ばれたため、以前と比べたら味や食感はあまり良くないとされているようです。とはいえ、現在のバナナもクローンで増やされていますから、やはり新たな病原菌の登場により最近では壊滅的なダメージを受ける農園も出てきてしまいました。現在、新たな耐病性品種を見つけることに躍起になっているそうです。

DSC_1557
Zamia furfuracea

脱線してしまったので、話を戻しましょう。
もともとフルフラケアは他のソテツと比較して遺伝子の多様性が高いとされています。しかし、都市開発などにより自生地も侵食され個体数も減少し、各個体群は孤立してしまいました。個体数は1つの個体群に100個体程度とされているようです。実際に創始者効果(※)やボトルネック効果(※※)が遺伝子解析により判明しており、遺伝的多様性は低下しています。個体群により遺伝的多様性は異なり、遺伝的多様性が高い群と低い群がありました。著者は遺伝的多様性の高い群をまずは重点的に保護すべきではないかと主張しています。

※創始者効果 : 祖先となった少数個体の遺伝子頻度の偏りに影響を受けること。
※※ボトルネック効果 : 個体数の激減により遺伝的多様性の低い集団が出来ること。


以上が論文の簡単な要約となります。
最近ではそれほど珍しくないフルフラケアですが、自生地では絶滅が危惧される希少種となってしまっています。大変悲しいことです。
しかし、研究者もなんとかしようと行動しています。例えば、Zamia integrifolia(異名Z. floridana)やZ. furfuraceaをモデルとして用いて、その繁殖効率を高めることを目的とした研究がなされています。これは、野生個体の違法採取を防ぐために、人工繁殖を確立して実生が流通してしまえは良いという考え方です。現実問題として違法採取を取り締まるだけでは効果が薄いということもあり、考えだされた現実的な方法です。このように研究者もソテツの保護に貢献していますが、自生地の破壊に対しては対策のしようがない状態です。とはいえ、保護のための情報を得るための研究は、保護活動を開始するための根拠となりますから、このような研究が行われることは非常に有用です。フルフラケアが絶滅しないことを切に願っております。

DSC_1655
フルフラケアの花。小さな実生苗から育てていますが、ようやく花が咲きました。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

去年は幾つかの多肉植物の即売会で、パキポディウムの小苗を何種類か購入したりしました。元より全種類集めるつもりはありませんでしたから、現在は手持ちにない種類を見かけてもスルーし、手持ち株の育成に重点をおいています。さて、そんなパキポディウムですが、過去には遺伝子解析による最新の論文を記事にしたことがあります。
そんな中、白い花を咲かせるパキポディウムに対する論文を見つけました。Jonas Lüthyの2008年の論文、『Notes on Madagascar's white-flowering, non-arborescent pachypodium and description of a new subspecies』です。現在のパキポディウムの分類は著者のLüthyの基準を採用していますから、Lüthyの論文は思いの外、重要です。では、早速内容に入りましょう。
花の色はパキポディウムの分類の歴史において重要な役割を果たしてきました。基本的に樹木性パキポディウムは白い花、非樹木性パキポディウムは黄色い花、さらには赤い花のP. baroniiとP. windsoriiがあります。花の色の違いにより、フランスの植物学者であるPichonはパキポディウムを3亜属に分けました。樹木性で白い花のChionopodium亜属(chion=雪)、低木状で黄色い花のChrysopodium亜属(chrysos=金)、赤い花のPorphyropodium亜属(porphyreos=紫)です。この分類は白い花を咲かせる非樹木性パキポディウムが発見される1980年代まで疑問視されませんでした。

エブルネウム P. eburneum
Boiteauは白い花を咲かせるP. rorulatumらしきパキポディウムをManandora河とMania河の合流地点近くの岩だらけの頂上で観察し、1949年以前に報告しました。しかし、Pichonは自身の分類の例外となるはじめてのケースであることを認識しましたが、それ以上の注意は払われませんでした。このBoiteauの観察は後のP. eburneumの最初の報告だったようです。実際にP. eburneumが新種として記載されたのは1997年のことでした。ただし、1980年代後半にはすでに園芸市場では取引されており、P. rorulatum albiflorumという俗称で呼ばれていました。1992年から始まった自生地の探索は幾度かの失敗の後、1996年にスイスのWalter ösliとRalph HoffmannによりIbity山で発見されました。この発見が、新種の正式な記載に繋がるきっかけでした。
_20221218_235723
Pachypodium eburneum

イノピナツム P. inopinatum
1980年代後半に白い花を持つ低木状のパキポディウムが園芸市場に登場しました。RauhによりP. rorulatumの白花個体とされました。1993年にP. eburneumの話でも登場したWalker ösliとRalph HoffmannはVohombohitra山脈のManakana近くで自生地を発見しました。1996年にP. inopinatumとして正式に記載され、P. rorulatumとの比較がなされました。著者はP. densiflorumとの関係があると考えているようです。

新種のパキポディウム?
Ibity山でP. eburneumが発見された後、プラントハンターは別の地域の個体群を報告し、ösliはIbity山の西にあるAndrembesoa渓谷で地元の写真家が撮影した開花写真を所有しています。2004年には花の直径が7cmにもなるややトゲの強いパキポディウムが、P. cf eburneumとして流通しました。CastillonはIbity山の南の地域の自生地を報告しており、1998年にはP. eburneumがP. densiflorumやP. brevicauleと一緒に生えているところを観察しました。新たな自生地はこれからも見つかる可能性があります。

レウコキサンツム
P. brevicaule subsp. leucoxanthum ssp. nov.

2004年頃、園芸市場に新たな白い花のパキポディウムが出現しました。Andrembesoa周辺からの採取を示唆していますが、自生地はまだわかっておりません。このパキポディウムは"P. brevicaule white flower"と呼ばれていますが、花は白色から淡い黄色まで幅があります。最近の研究では種子がP. brevicauleとは異なることが明らかとされています。P. brevicauleは非常に均一であることが知られており、亜種として区別するための新しい名前が必要です。著者はP. brevicaule subsp. leucoxanthumと命名しました。これは、「白い、淡い」を表す'leucos'と「黄色」を表す'xanthos'からなります。
_20221220_222732
Pachypodium brevicaule subsp. leucoxanthum

以上が論文の簡単な要約となります。
しかし、近年の論文では遺伝子解析の結果から、P. densiflorumは産地により遺伝子に違いがあることがわかりました。おそらく本来のP.densiflorumはP. brevicauleと近縁です。P. eburneumはややはっきりしませんが、系統的にはP. densiflorumやP. brevicauleと近縁でしょう。また、P. horombenseと分布が近いP. densiflorumは、おそらくP. densiflorumではなくP. horombenseに含まれるのでしょう。さらに、3つ目のグループはP. densiflorumとP. inopinatumとP. brevicaule subsp. leucoxanthumからなります。驚くべきことに、P. brevicaule subsp. leucoxanthumはP. brevicaule subsp. brevicauleとは近縁ではありません。しかし、これらの成果は現在の学術的な分類としては正式に採用されていません。更なる詳細な解析を必要としているのかも知れませんが、いずれパキポディウム属全体の全面的な改訂は避けられないように思われます。

ちなみに、著者がこの論文で提案したPachypodium brevicaule subsp. leucoxanthumは現在認められています。論文にあるssp.nov.とは単に新亜種という意味です。著者は種子がP. brevicauleとは異なると述べていますが、将来的には別種になるかも知れません。
また、巨大な花を咲かせるパキポディウムについてですが、Pachypodium enigmaticumのことでしょうか? 論文では簡単にしか触れられていませんから、断言できませんが…


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

「親しみやすさは軽蔑を生む」(familiarity breeds contempt)とは中々含蓄のあることわざです。このことわざはイソップ童話の「キツネとライオン」という話に出てくるフレーズなんだそうです。多肉植物に当てはめれば、普及種が親しみやすさとともに軽視される傾向があるのではないでしょうか?
個人的には普及種も好きで面白いと感じていますが、どうも世の中的には異なるようで、普及種の多肉植物が手入れもされずにカリカリになっていたりするのは大変悲しいことです。安くいつでもどこでも入手可能とあらば、扱いが荒くなるのもやむ無しかも知れません。まあ、普及種はお値段的にもお手軽ですからね。
しかし、そんな普及種であっても良いものは良いのだという熱い論考に出会いました。それは、イギリスのキュー王立植物園のPeter Brandhamの1981年の『Aloe aristata : an underrated species』です。


_20221217_091735
Aristaloe aristata=Aloe aristata

著者にとって「親しみやすさは軽蔑を生む」ということわざはAloe aristataに当てはまるとしています。日本ではあまり見かけることがないAloe aristata(現在はAristaloe aristata, 綾錦)ですが、イギリスでは昔から知られている園芸植物です。イギリスではチェーン店や園芸用品店で入手可能で、多肉植物のコレクターはわざわざ栽培する価値はないと考えています。

Aloe albiflora, Aloe bakeri, Aloe bellatula, Aloe deltoideodonta, Aloe descoingsii, Aloe dumetorum, Aloe erensii, Aloe forbesii, Aloe haworthioides, Aloe humilis, Aloe jucunda, Aloe juvenna, Aloe myriacantha, Aloe polyphylla, Aloe rauhii, somaliensis, Aloe variegataなど魅力的な小型~中型のアロエは沢山ありますが、栽培が難しいものが多いとしています。これらは根を失いやすく、入手が難しく、開花しないと言います(※)。対して、A. aristataは良く子を吹き、入手は容易です。冬は乾燥させれば良く、直径6cm程度になると定期的に開花します。花は植物に対して大きいと言います。

※私も上記の1/3の種類くらいしか育てたことはありませんが、栽培はそれほど難しくありませんでした。しかし、晴れが少なく寒冷なイギリスの気候では難しい部分もあるのでしょう。

_20221217_091115
Aloe descoingsii

DSC_1906
Aloe somaliensis

DSC_1815
Aloe haworthioides

A. aristataの花はピンク~鈍い赤色と淡黄色~クリーム色の2色からなる、アロエ属でも独特の花を咲かせます。これを著者は"bicolor"、つまりは「二色」と表現していますが、このラテン語は種小名で良く見かけますね。
A. aristataの葉は非常に多いことが特徴です。小型種のA. haworthioidesよりも多いとしています。葉の縁には柔らかいトゲがあり、葉の先端には長い毛のような芒があります。葉の表面には斑があり、葉裏により多くあります。

A. aristataは南アフリカ原産で、東ケープ州、オレンジ自由州、レソトなど非常に広い範囲に分布します。変種としてvar. leiophyllaとvar. parvifoliaが知られていました。しかし、アロエ研究の権威であったReynoldsによりA. aristataの範囲内と見なされ、認められていません。ただ、A. aristataには起源が不明の栽培種があり、分かりやすい4つのバリエーションを以下に示します。
1, 「典型的」なフォルム。自由に子を吹く最も一般的なタイプです。狭い灰緑色の葉を持ち、葉裏にはトゲと斑点が通常はランダムに、時には縦方向へ列となります。
2, 「単純」なフォルム。直径30cm以上となる可能性があり、滅多に子を吹きません。葉は「典型的」なフォルムより長く狭く、葉裏のトゲは縦に並ぶ傾向がより顕著です。
3, 'crisp'フォルム。非常に良く子を吹くタイプで、著者は最も魅力的と表現しています。葉は短く幅広で、トゲが多く葉裏では2~3列となります。
4, 'Cathedral Peak'フォルム。葉には斑点がほとんどなく、トゲも少数です。適度に子を吹きます。このフォルムは、南アフリカのDrakensberg山脈のCathedral Peak由来のものです。典型的なA. aristataの花を咲かせるにも関わらず、ヨーロッパでは× Gastrolea bedinghausii(
A. aristata × Gasteria sp.)という誤った名前で長年栽培されています。

A. aristataはGasteriaと容易に交雑可能で、著者は沢山の交配種を作ったそうです。ガステリアとの交配種の特徴は、両親の中間的な花を咲かせることだそうです。ただし、この交配種は花粉の受粉能力に乏しいのですが、× Gastrolea bedinghausiiは花粉の受粉能力が常に90%を越え、A. aristataと変わりません。ですから、× Gastrolea bedinghausiiは交配種ではないと考えられるのです。

DSC_1921
A. aristata × Gasteria sp.

著者はA. aristataはきちんと育てればそれ自体が魅力的であり、交配種の作成が容易なので交配の入門としても適すると主張します。A. aristataの異なるフォルムはコレクションに値するものであり、「温室にはこれ以上植物を入れる余裕がない」という使いふるされた言い訳は使うことは出来ないと絶賛しています。著者の住むSurreyでは非常に丈夫で、過去3年間庭の明るい日陰で育ち、1978/9年の非常に厳しい冬にも耐えてきました。毎年、夏に開花します。

以上が論考の簡単な要約です。
日本では人気がないせいか、園芸店ではほとんど見られませんが、イギリス(1981年の)では一般的なようです。しかし、著者が絶賛するようにA. aristataは非常に美しい植物です。さらに、私は形態的にアロエ的ではない感じが非常に面白く思います。A. aristataが命名されたのは1825年のことで、Aloe aristata Haw.が長年正式名称でした。しかし、遺伝子解析の結果から、2014年にAristaloe aristata (Haw.) Boatwr. & J.C.Manningとなり、アロエ属から分離しました。現在、アリスタロエ属は1属1種の珍種ですから、その点においてもコレクションするに値する多肉植物でしょう。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

現代医学が幅を利かせているように思われる昨今ですが、未だに世界中で薬草が現役で使用されています。先端医療が行き届いていないという事実もありますが、それだけではないでしょう。伝統的な風習にも関係があります。多肉植物も医療目的で使われることがありますが、なんと驚くべきことに毒があることで有名なユーフォルビアが薬草として利用されていると言うのです。特に世界中で帰化しているEuphorbia tirucalliは薬草として世界中で栽培されています。また、アフリカでも様々なユーフォルビアが薬草として使われていますが、猛毒の矢毒キリンすら薬草なのですから驚かされます。

DSC_1714
矢毒キリン Euphorbia virosa

さて、本日はその矢毒キリンのベナン共和国における薬草としての利用方法について調査した、Gbodja Houehanou, Francois Gbesso, Jhonn Logbo, Jacques EvrardCharles Aguia Dahoによる『Variability between Socio-culture Groups and Generations of Traditional Knowledge of Euphorbia poissonii Pax in Benin』という論文です。

世界保健機関(WHO)によると、発展途上国の世界人口の約65~80%は、貧困と現代医学へのアクセスの困難から薬草に依存しているとしています。アフリカでは薬草は先祖代々の慣習であり、人口の80%近くが薬草を利用しています。薬草の知識は主に口伝による世代間の伝承によります。
この調査はベナン共和国のSavalou市において、Mahi族とNago族のE. virosaの利用方法を調査しました。調査は112人に対する個別インタビューによるものです。Savalouはスーダン - ギニアのサバンナ植生と湿潤熱帯の移行帯に位置しています。岩の多い土壌はE. virosaの生育には適した環境です。現地ではE. virosaは庭や畑で栽培されます。
調査の結果によると、成人のMahiや若いNagoはE. virosaを単純に毒として利用し、成人と老人のNagoは薬用とする傾向があります。また、老人のMahiはE. virosaを魔術的な医療として利用する傾向があります。しかし、統計学的には薬用あるいは毒としての利用が重要でした。調査ではE. virosaの21の用途が明らかとなりました。葉、樹皮、茎、乳液が特定の病気や症状に対して治療目的で使用されました。体の一部あるいは創傷による腫れ、麻疹、サソリ刺されなどの治療においてMahi社会では重要な用途でした。また、成人女性及び老人(女性)、若い男性のMahiは葉を使用する傾向があり、成人男性のNagoと老人Mahiは乳液、老人Nagoと若い女性Mahiは樹皮をより使用する傾向があります。


以上が論文の簡単な要約となります。
矢毒キリンの名前の通りE. virosaは毒性が高いことで知られています。しかし、それはベナンにおいても同様で、E. virosaは毒性が高いと正しく認識されているようです。それでも薬用に用いるのは、強力に人体に作用するからでしょう。それは必ずしも良い作用ばかりではないかも知れませんが…。とはいえ、E. virosaの乳液にはおそらくは未知の化合物も含まれているはずで、すでに抽出された化合物であっても薬理作用は完全に解明されてはいないはずです。このような伝統医療の解明と活用法については、まだ様々な可能性を秘めているように思えます。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村


南アフリカは多肉植物の宝庫で、その多様はアフリカでも他の追随を許しません。ユーフォルビアやアロエと言えば南アフリカかマダガスカルですし、ガステリアやハウォルアと言えば断然南アフリカでしょう。そんな多肉植物の楽園である南アフリカですが、大型の樹木のようなユーフォルビアがあちらこちらに生えています。そんな樹木状ユーフォルビアについて書かれた記事を見つけました。

本日ご紹介するのは、Sean Gildenhuysの2006年の記事、『The three most abundant tree Euphorbia species of Transvaal (South Africa)』です。
表題にあるTransvaalとは南アフリカの北部4州であるLimpopo州、Mpumalanga州、Gauteng州、North-West州にあたる地域をかつてはそう呼んでいました。このTransvaal原産のユーフォルビアは割と希少なものが多く、Euphorbia barnardii、Euphorbia clivicola、Euphorbia knoblii、Euphorbia waterbergensis、Euphorbia zoutpansbergensisは分布域が狭く個体数も少ないことが知られています。しかし、記事では分布が広く個体数が非常に多い3種類のユーフォルビアが取り上げられています。その3種類とは、Euphorbia cooperi var. cooperi、Euphorbia ingens、Euphorbia tirucalliで、どこにでも生えるためこの3種類で構成された地域もあります。この3種類は樹木状で大型となります。


Euphorbia cooperi var. cooperi
日本では瑠璃塔の名前で知られているユーフォルビアです。
学名はE. cooperiを英国に紹介した植物収集家・栽培家のThomas Cooperに対する献名です。1900年にThomas Cooperの義理の息子であるN.E.Brownは、王立植物園で栽培されている双子葉植物リストに適切な説明もなくE. cooperiを命名しました。1907年にA.Bergerは多肉ユーフォルビアのハンドブックを出版し、E. cooperiについて適切な説明を付加しました。そのため、現在の学名はE. cooperi N.E.Br. ex A. Bergerとなっています。N.E.Brownが最初に命名したものの、命名規約の要件を満たしていないため、要件を満たしたA.Bergerの名前も入っているわけです。しかし、残念ながらA.BergerのハンドブックのE. cooperiのイラストは間違っていてE. ingensが書かれています。また、Thomas Cooper自体がE. ingensとE. cooperiを混同していたようです。

さて、E. cooperi var. cooperiは約10mほどの高さになります。根元から分岐せずに、枝は上部に固まってつきます。枝は分節構造が積み重なるため、クビレが生じます。
E. cooperi var. cooperiは南アフリカに広く分布し、KwaZulu-Natal、スワジランド、North-West州、Mpumalanga、Limpopo州からモザンビーク、ジンバブエ、ボツワナまで見られます。Limpopo州のPenge地区に固有のE. grandialataと混同される可能性がありますが、E. grandialataの方がトゲが長く、E. cooperiとは異なり花序に柄があります。
E. cooperi var. cooperiの乳液は非常に毒性が高く、皮膚に触れるだけで激しい痛みを引き起こし、水ぶくれや失明の可能性すらあります。E. cooperiの原産地では、E. cooperiの乳液を加熱して「鳥もち」を作り水辺の枝に塗って鳥を捕まえます。また、漁にも使われるそうです。

DSC_1890
瑠璃塔 Euphorbia cooperi

Euphorbia ingens
日本では沖天閣の名前で知られているユーフォルビアです。
E. cooperi var. cooperiと時折見られるのが、Euphorbia ingensです。種小名は「巨大な」という意味で、枝が頑丈で重いことを差します。E. ingensは1831年にJ.F.Dregeにより発見され、1843年にE.Mayerにより記載されました。
E. ingensは高さ10mになり多くの枝を持つ樹木状ユーフォルビアです。E. ingensはKwaZulu-Natal、スワジランド、Mpumalanga、Gauteng、North-West州、Limpopo州、モザンビーク、ジンバブエに自生します。南アフリカにはE. ingensの近縁種はいませんが、より北部ではE. candelabrum、E. kamerunicaなどの近縁種が数種類あります。E. ingensは非常に広範囲に分布するため変動に幅があり、変種あるいは新種が分離される可能性もあります。
Transvaalのユーフォルビアの中でもE. ingensの乳液は非常に毒性が高く、皮膚への刺激性が高く火傷を引き起こします。目に入ると失明の危険性があります。ただし、地元の人は下剤(※)として利用していると言います。また、乳液は潰瘍や癌に効果があるとされているそうです。

E. ingensは材木としても利用されます。E. ingensは生長が早く干魃に強く、Limpopo州ではよく使われます。また、E. ingensは非常に頑丈な生垣として植栽されます。

※記事には詳しく書いてありませんが、おそらくは駆虫薬でしょう。砂糖を入れると書いてありましたが、おそらくかなり希釈するはずです。

Euphorbia tirucalli
日本ではミルクブッシュや緑サンゴなどの名前で知られているユーフォルビアです。
E. tirucalliは樹木状ユーフォルビアの中でも最も有名で、おそらく最も普及しています。E. tirucalliは世界中で帰化しており、その起源は定かではありません。南アフリカでは、東ケープ州からMpumalanga、North-West州、Limpopo州に分布します。E. tirucalliはトゲのない円筒形の枝が分岐する独特のフォルムの植物で、近縁種の多くはマダガスカル原産です。

E. tirucalliは1753年にCarl von Linneにより命名されましたが、タイプはインドで栽培されていた個体から作成されました。このインドのE. tirucalliはモザンビークに立ち寄った初期のポルトガル人によりもたらされた可能性があります。ただ、それ以前にすでに導入済みだったのかもしれません。種小名はインドの住民の呼び方から来ています。
E. tirucalliは低木状から高さ10mに達することもあります。E. tirucalliの乳液はやはり危険ですが、アフリカやインドでは生垣にされてきました。虫の駆除や矢毒、E. tirucalliの乳液を米と煮て鳥もちを作ります。また、乳液は不妊症やインポテンツに効果があるとされ飲まれることがありますが、これは流石に危険性が高く致命的となりかねないようです。さらに、多くの病気(淋病、梅毒など)や癌、イボなどの治療に役立つとされています。
E. tirucalliの乳液の抽出物は石油の代替品として研究され肯定的な結果が得られているそうです。また、乳液をゴムの代用品として使用されましたが低品質です。
E. tirucalliは様々な美しい園芸品種が作られており、挿し木で簡単に増やせることもあり南アフリカでは造園用として盛んに利用されています。


以上が簡単な要約となります。
しかし、毒性の高いユーフォルビアの乳液を薬としようというだけでとんでもないなあと思ってしまいます。しかし、現代の薬自体が毒から作られてきたという事実があります。毒というのは人体に強く作用していることから、作用が分かれば用法容量次第で薬となるのです。E. tirucalliは世界中に生えているせいか、乳液の中の有効成分を解析した沢山の論文が出ています。しかし、逆を言えばユーフォルビアは化学成分の論文ばかりで、植物自体についての論文が少ないのは残念です。知りたいことは山程あるわけですが…



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村


多肉植物好きとして以前から気になっていることがあります。それはホリダ(Euphorbia polygona var. horrida)が、自生地では寄生植物に寄生されているというのです。現在、ホリダはポリゴナ(Euphorbia polygona)の変種とされていますが、やはりポリゴナも同じ寄生植物に寄生されると言いますから、やはりホリダとポリゴナは近縁なのだろうと感じました。しかし、論文を探ってみると購入しないと読めないものしかなく、半ば諦めかけていました。しかし、最近ホリダについて色々調べていた際、多肉ユーフォルビアに寄生する寄生植物について書かれた論文を見つけました。今まで調べて読めなかった論文とは異なり、ホリダについて書かれた部分は極僅かでしたが、しかし貴重な情報を得られることは大変な僥倖です。

本日ご紹介するのはMaik  Vesteの2007年の論文、『Parasitic flowering plants on Euphorbia in South Africa and Namibia』です。早速内容に入りましょう。
南アフリカとナミビアには67種類の寄生植物が知られており、23種類は茎に寄生し、44種類は根に寄生します。主に樹木を寄生先(宿主)としていますが、Aloidendron dichotomumやCotyledon、Lampranthusなどの多肉植物を宿主とするものもあります。多肉植物ではユーフォルビアの寄生植物で高い多様性が見られます。

まずは根に寄生する寄生植物から見ていきましょう。
ヒドノラ属はアフリカ南部ではHydnora africanaとHydnora tricepsが見られ、ユーフォルビアだけを宿主としています。Hydnora africanaはケープ半島からナミビアのNama Karoo、東は東ケープ州まで広く分布します。対してHydnora tricepsは希少です。植物学者のJohann F. Dregeは1830年にNamaqualandのOkip近くでH. tricepsを発見し標本を採取しました。しかし、Johann Visserが1988年にNamaqualandで再発見するまで忘れ去られていました。分布はNamaqualandとナミビア南部の狭い地域からのみ知られています。H. tricepsはEuphorbia dregeanaに寄生し、他のユーフォルビアが近くに生えていてもE. dregeanaにのみ寄生します。Namaqualandの北西にあるPort NollothではE. dregeanaの10%、ナミビア南部では0.5%以下の寄生率であると推定されています。
Hydnoraは地下で育ち葉がないため、見つけることは中々困難です。しかし、腐敗臭を放つ異様な姿の肉質な花が、地面から地上に出て来て咲きます。悪臭は受粉のためにハエを呼んでいるのかもしれません。果実は食用となり甘味があり、南アフリカ北部のKhoi族は伝統的に利用しています。

次に茎に寄生する寄生植物を見てみましょう。
樹木の枝に寄生するヤドリギはアフリカ南部の乾燥地帯でも一般的です。寄生植物は決まった宿主に寄生しますが、中には相手をあまり選ばない種類もあります。Tapinanthus oleifoliusはAcacia、Aloe、Citrus、Ficus、Rhus、Tamarixや他の種類の寄生植物にすら寄生します。このT. oleifoliusは矢毒キリン(Euphorbia virosa)にも寄生することが知られています。

DSC_1893
矢毒キリン Euphorbia virosa

最小のヤドリギはViscum minimumで、2~3枚の葉を持ち数ミリメートルしかありません。Little Karooから東ケープまで分布します。
1981年にVisserはV. minimumが、ほぼ独占的にEuphorbia polygonaとEuphorbia polygona var. horridaに寄生することを報告しました。実験レベルでは他の28種類のユーフォルビアにも寄生させることに成功しています。しかし、野生状態では分かりません。


_20221215_195230
ホリダ
Euphorbia polygona var. horrida(神代植物公園)

以上が論文の簡単な要約です。
ホリダに寄生する植物がいるという話を聞いた時に、驚くとともに非常に興味深く感じました。私は何故かホリダの根に寄生するのだろうと、勝手に思い込んでいました。それがまさか幹に数ミリメートルのゴミみたいなヤドリギがゴマを散らしたようにくっついているとは、予想値にしませんでした。
このように、論文を読むたびに新鮮な驚きがあります。多肉植物の意外性は、私の想像を上回るものがあります。これからも多肉植物の謎を調べて行きたいと思います。



ブログランキング参加中です。
クリックしていただけますと嬉しく思います。
にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村


このページのトップヘ