最近、某匿名掲示板をダラダラ見ていたら、サボテンが霧から水分を得るという仮説に対して、かなり否定的な論調が見受けられました。しかし、実際に色素液をアレオーレに滴下してからサボテンを輪切りにすると、アレオーレから吸収された色素がサボテン内の維管束に拡がる様子が観察出来ます。砂漠は日中と夜間の寒暖差が激しいので、夜間に霧が発生しますから、いわゆる夜露を吸収することは理にかなった生態です。霧を吸収するなら、某匿名掲示板では地面に染み込んだ霧を根から吸収した方がいいと言うような書き込みもありましたが、露は表土を濡らすだけで深く染み込むほどの量はありません。サボテンは深く根を張るものが多く、日中高温になり乾燥しますから露が染み込むほど浅い場所に細根は張らないでしょう。とは言え、すべてのサボテンが露を頼りにしているわけではないようです。露をキャッチするのはトゲで、トゲは表面の微細構造により露をアレオーレに運びます。しかし、サボテンによってはトゲの微細構造が露を運ぶのに適しておらず、露を利用していないと考えられるものもあります。
さて、前置きが長くなりましたが、今日はトゲを介した吸水の話をしましょう。以前も記事にしましたが、今回は異なる種類のサボテンを対象とした論文です。

以前の記事です。ご参照までに。
本日はYahya S. Masrahiの2020年の論文、『Glochids microstructure and dew harvesting ability in Opuntia stricta (Cactaceae)』をご紹介します。

霧と露
霧と露は空気中の過剰な水蒸気から発生し、水滴として凝縮する浮遊水のもっとも顕著な発生源です。液滴が浮遊する場合を霧と呼びます。霧は空気が露点以下に冷却されて水滴が結露することにより形成されます。多くの乾燥地域や半乾燥地域では、霧と露がその時の気候条件に応じて一定量の水源となります。干ばつが深刻な年には、霧が年間降水量を超えることもあります。そのような厳しい環境では、霧や露が重要な役割を果たします。

疎水性と親水性
個体表面上での液滴形成にとって重要なのは、三相境界で形成される接触角です。ちなみに三相境界とは、液体と蒸気の境界面が固体表面と接する場所のことです。接触角が90°未満の場合は親水性で、これは濡れが発生し広い領域を液滴が覆います。一方、接触角が90°を超えると疎水性となり濡れ性は低くなります。疎水性表面上の液滴はより球形になる傾向があり、小さな領域しか固体表面に触れません。

霧を集めるサボテン
サボテンの中でトゲ(spine)や芒刺(glochid)で霧や露を集めることが知られている種類はほとんどありません。トゲや特に芒刺は表面の微細構造が大きく異なります。結露は気温、湿度、表面の微細構造により制御されるため、結露を集める能力はサボテンのトゲの微細構造次第です。現在までにトゲが水分を集めることが確認されたサボテンはわずか数種類しかありません。

実験
芒刺を持つOpuntia strictaと言うウチワサボテンを実験に使用しました。O. strictaには、長さ10〜25mmのトゲと、微細な毛状突起である芒刺があります。サンプルはサウジアラビアでは侵略的外来種であるO. strictaを野外で採取し使用しました。トゲは表面に目立った構造はなく、ほとんど無毛で露の収集能力を示しませんでした。
芒刺は電子顕微鏡で表面構造を調べました。また、夜霧を想定した人工的な霧がある環境で、トゲと芒刺がついたアレオーレを置き、顕微鏡で液滴の形成を観察しました。


芒刺の微細構造
芒刺はアレオーレに約80本あり、長さは約5mmでした。芒刺の表面は逆向きの扁平で先の尖った突起に覆われていました。突起の先端はほぼ滑らかで、基部には微細な溝があり表面は先端よりも粗くなっていました。芒刺の先端部の頂角は9.25°前後で鋭く、突起の先端部の頂角は41.5°前後で弱く扇形でした。

液滴形成の過程
人工的な霧の中で芒刺の表面に水滴が堆積し始めます。まず、芒刺の先端部にコアが形成され、小さな液滴が芒刺の基部に移動しながら、他の液滴と合体して大きな液滴を形成します。直径約130mm以上となった液滴は芒刺の基部へ移動し合体します。
液滴が表面上を移動している時、液滴の接触角が最大(膨張)になる前進接触角と、最小(収縮)となる後退接触をからなります。芒刺では76.25°前後の前進接触角と、52.5°前後の後退接触角が明らかとなりました。実験で使用した芒刺は垂直か半垂直でしたが、液滴の堆積は水平方向の芒刺でも発生します。

ラプラス圧力勾配
芒刺と芒刺の突起は9.25〜41.5°の円錐頂角を持ちますが、このような形態は表面にラプラス圧力勾配を生じます。この時、基部よりも先端部でより強いラプラス圧力を持ちます。この差は円錐の先端部小さな半径と高い曲率、円錐の基部の大きな半径と低い曲率により生じます。これはラプラスの定理で表すことができます。
円錐に沿った先端部から基部までの間の液滴のラプラス圧力勾配は、液滴の臨界サイズである約130mmに達した場合、液滴の自発的な移動を引き起こす駆動力の1つです。

Wenzel状態
芒刺は基部に向かうにつれ顕著な溝があります。この特徴は芒刺の突起にもあり、基部に向かうほど増加します。これがWenzel状態であるならば、芒刺と芒刺の突起の表面の「粗さ」が基部に向かうほど増大することにより、錐体構造の先端から基部に向かう液滴の移動に推進力が生まれる可能性があります。

表面エネルギー勾配
表面エネルギー勾配の原理では、水滴は低い表面エネルギー(濡れ性が低い)から高い表面エネルギー(濡れ性が高い)まで、濡れ性の勾配に沿って移動する傾向があります。サボテンのトゲと芒刺はクチクラと石細胞により防水性がありますが、芒刺の基部にある毛状突起(アレオーレの毛のようなもの)は湿潤性があります。吸湿性の毛状突起は湿潤性が高く、芒刺と芒刺の突起の先端部は表面エネルギーが低くなります。この表面エネルギー勾配も液滴の移動を引き起こす駆動力の1つであると考えられます。

最後に
以上が論文の簡単な要約です。
水滴がトゲを伝ってアレオーレに向かって流れ落ちるだけならば、あまり濡れ性は関係ないと思われる方もおられるでしょう。しかし、濡れ性が低いと言うことは、蓮の葉の上の水滴が弾かれて転がるように、トゲに水滴は付着しないと言うことです。濡れ性が低い場合は、水滴は単純に重力により落下しますから、トゲを伝ってではなく垂直方向への自由落下により地面に落ちてしまいます。逆に濡れ性が高い場合は、トゲに水滴が付着し、表面の勾配により水滴は移動します。この時、水滴は単純に重力により落下しているわけではありません。特に水滴が出来る最初のコアは非常に小さな粒子なのですから、勾配がなければただ表面に貼り付くだけで移動しないでしょう。水平方向の芒刺にも水滴の移動が起こるのは、重力よりも表面の微細構造による勾配の力が影響しているからです。
さて、このように芒刺とアレオーレを介した霧からの水分吸収は理屈の上からも、観察した結果からも明らかです。しかし、その吸水量がサボテンの生存や生長にどれだけ貢献しているのかは、実はよく分かりません。論文の中では霧からの吸水が確認されたのは数種類とありますが、これは数種類しかないのではなくて、数種類しか調査されていないと言うことです。例えば、サボテンの種類ごとの生息環境と、霧からの吸水能力の有無を沢山の種類で確認出来た場合、間接的に霧からの吸水が環境に適応した結果であるかを考察出来るかも知れません。また、アレオーレからの吸水の影響を、栽培されたサボテンで試験することも出来るでしょう。根からの吸水とアレオーレからの吸水は、吸水力や吸水量以外にも違いがある可能性もあります。もし、その違いがサボテンの生育に深い関係があるのなら、サボテンの栽培方法にも新たな工夫が出来るかも知れませんね。


ブログランキング参加中です。
クリックしていただけますと嬉しく思います。

にほんブログ村 花・園芸ブログ 塊根植物・塊茎植物へ
にほんブログ村

にほんブログ村 花・園芸ブログ サボテンへ
にほんブログ村